Resumen
Chest X-ray image classification suffers from the high inter-similarity in appearance that is vulnerable to noisy labels. The data-dependent and heteroscedastic characteristic label noise make chest X-ray image classification more challenging. To address this problem, in this paper, we first revisit the heteroscedastic modeling (HM) for image classification with noise labels. Rather than modeling all images in one fell swoop as in HM, we instead propose a novel framework that considers the noisy and clean samples separately for chest X-ray image classification. The proposed framework consists of a Gaussian Mixture Model-based noise detector and a Heteroscedastic Modeling-based noise-aware classification network, named GMM-HM. The noise detector is constructed to judge whether one sample is clean or noisy. The noise-aware classification network models the noisy and clean samples with heteroscedastic and homoscedastic hypotheses, respectively. Through building the correlations between the corrupted noisy samples, the GMM-HM is much more robust than HM, which uses only the homoscedastic hypothesis. Compared with HM, we show consistent improvements on the ChestX-ray2017 dataset with different levels of symmetric and asymmetric noise. Furthermore, we also conduct experiments on a real asymmetric noisy dataset, ChestX-ray14. The experimental results on ChestX-ray14 show the superiority of the proposed method.