Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Applied Sciences  /  Vol: 12 Par: 18 (2022)  /  Artículo
ARTÍCULO
TITULO

Nonlinear Thermo-Structural Analysis of Lightweight Concrete and Steel Decking Composite Slabs under Fire Conditions: Numerical and Experimental Comparison

Juan Enrique Martínez-Martínez    
Felipe Pedro Álvarez-Rabanal    
Mar Alonso-Martínez and Juan José del Coz-Díaz    

Resumen

Composite slabs with steel decking profiles are widely used in building construction. However, the literature on the fire resistance of lightweight concrete (LWC) composite slabs with steel decking is limited. In this work, the thermo-structural performance of LWC composite slabs with trapezoidal steel decking was studied under fire conditions. A total of 12 experimental fire tests were carried out using specimens of 160 mm thickness, 1120 mm width and 2030 mm length, in which nine composite slabs were made of LWC and the remaining three slabs were made of normal concrete (NC) to serve as a benchmark for comparison. All the samples were tested in a furnace following EN 13381-5, applying the standardized time?temperature curve and constant load. During the experimental tests, phenomena such as the vaporization of the free water inside LWC, debonding between steel decking and concrete and changes in material properties affected the thermo-structural performance of composite slabs. The test results show that the load-bearing capacity of lighter slabs does not assure the minimum structural behavior of R30. However, the lighter the concrete is, the lower the thermal transmittance, improving the slabs? thermal performance under fire conditions. Advanced nonlinear numerical models were developed to predict the thermal and structural performance of the studied LWC composite slabs in terms of temperature and time-displacement. The influences of key factors such as vaporization, thermal strains and debonding were included using material properties and a thermal contact conductance interlayer. Finally, the nonlinear models and the experimental results were compared. The difference between the experimental and numerical values was less than 15%, showing that the numerical results were in good agreement with the experimental results. The results of this study also compared the performance of LWC composite slabs with the NC composite slabs, giving rise to interesting conclusions from a practical point of view.

 Artículos similares

       
 
Xiaoyun Zhang, Xiaoan Zhang, Jiangang Xu, Li Yang and Gao Song    
In the actual operation of urban rail transit (URT), the vibrations of steel-spring floating-slab tracks (SSFSTs) are amplified, and the track structure has strong low-frequency acoustic radiation; therefore, it is necessary to study the acoustic radiati... ver más
Revista: Applied Sciences

 
Michal Juszczyk    
Analyses of efficiency are vital for planning and monitoring the duration and costs of construction works, as well as the entire construction project. This paper introduces a combined quantitative (probabilistic) and qualitative (machine learning-based) ... ver más
Revista: Applied Sciences

 
Ali Aryo Bawono, Nen NguyenDinh, Janaki Thangaraj, Maximilian Ertsey-Bayer, Christoph Simon, Bernhard Lechner, Stephan Freudenstein and En-Hua Yang    
A modified strain-hardening cementitious composite (SHCC) material, fabricated using corundum aggregates (SHCC-Cor), has been proposed for roadway applications as it offers high structural performance and high skid resistance. However, the acoustic perfo... ver más
Revista: Acoustics

 
Ali Sadik Gafer Qanber, Mohammed H. Yas and Mohammed M. Kadhum    
This study has two main aims; firstly, investigating the behavior of slabs that are strengthened with different types of reinforcements and with Slurry-Infiltrated Mat Concrete (SIMCON) laminates, having different dimensions and thicknesses and subjected... ver más
Revista: Infrastructures

 
Joo-Hong Chung, Hyung-Suk Jung and Hyun-Ki Choi    
In reinforced concrete (RC) structures, bond behavior between concrete and deformed steel bar (rebar) has a great effect on the structural behavior of members including voided slabs. According to previous research, bond behavior of a rebar in voided slab... ver más
Revista: Applied Sciences