Redirigiendo al acceso original de articulo en 21 segundos...
ARTÍCULO
TITULO

Validation of a Tool for the Initial Dynamic Design of Mooring Systems for Large Floating Wave Energy Converters

Jonas Bjerg Thomsen    
Francesco Ferri and Jens Peter Kofoed    

Resumen

Mooring of floating wave energy converters is an important topic in renewable research since it highly influences the overall cost of the wave energy converter and thereby the cost of energy. In addition, several wave energy converter failures have been observed due to insufficient mooring systems. When designing these systems, it is necessary to ensure the applicability of the design tool and to establish an understanding of the error between model and prototype. The present paper presents the outcome of an experimental test campaign and construction of a numerical model using the open-source boundary element method code NEMOH and the commercial time-domain mooring analysis tool OrcaFlex. The work used the wind/wave energy converter Floating Power Plant as a case study, which is defined as a large floating structure with a passive mooring system. The investigated mooring consists of a three-legged turret system with synthetic lines, and it was tested for both operational and extreme events. In order to understand the difference between the model and experimental results, no tuning of the model was done, besides adding drag elements with values found from a simplified methodology. This resembles initial design cases where no experimental data are available. Generally good agreement was found for the tensions in the lines when the drag element was applied, with some overestimation of the motions. The main cause of difference was found to be underestimation of linear damping. A model was tested with additional linear damping, and it illustrated that a final analysis needs to use experimental data to achieve the best results. However, the analyses showed that the investigated model can be used without tuning in initial investigations of mooring systems, and it is expected that this approach can be applied to other similar systems.

Palabras claves

 Artículos similares

       
 
Pietro Vivalda and Marco Fioriti    
The growing environmental public awareness and the consequential pressure on every industrial field has made environmental impact assessment increasingly important in the last few years. In this scope, the most established tool used in the specialized li... ver más
Revista: Aerospace

 
Lilai Jin, Sarah J. Higgins, James A. Thompson, Michael P. Strager, Sean E. Collins and Jason A. Hubbart    
Saturated hydraulic conductivity (Ksat) is a hydrologic flux parameter commonly used to determine water movement through the saturated soil zone. Understanding the influences of land-use-specific Ksat on the model estimation error of water balance compon... ver más
Revista: Water

 
Yong Liu, Xiaohui Yan, Wenying Du, Tianqi Zhang, Xiaopeng Bai and Ruichuan Nan    
The current work proposes a novel super-resolution convolutional transposed network (SRCTN) deep learning architecture for downscaling daily climatic variables. The algorithm was established based on a super-resolution convolutional neural network with t... ver más
Revista: Water

 
Cagri Alperen Inan, Ammar Maoui, Yann Lucas and Joëlle Duplay    
Water resource management scenarios have become more crucial for arid to semi-arid regions. Their application prerequisites rigorous hydrological modelling approaches since data are usually exposed to uncertainties and inaccuracies. In this work, Soil Wa... ver más
Revista: Water

 
May Alsaidi, Nadim Obeid, Nailah Al-Madi, Hazem Hiary and Ibrahim Aljarah    
Autism spectrum disorder (ASD) is a developmental disorder that encompasses difficulties in communication (both verbal and non-verbal), social skills, and repetitive behaviors. The diagnosis of autism spectrum disorder typically involves specialized proc... ver más
Revista: Information