Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Applied Sciences  /  Vol: 12 Par: 8 (2022)  /  Artículo
ARTÍCULO
TITULO

Effects of Time and Temperature on Stability of Bioactive Molecules, Color and Volatile Compounds during Storage of Grape Pomace Flour

Carmela Gerardi    
Miriana Durante    
Maria Tufariello    
Francesco Grieco and Giovanna Giovinazzo    

Resumen

Background: Grape pomace is highly attractive for the food industry as it contains numerous bioactive molecules relevant for human health. However, in order to exploit pomace flour as a functional food ingredient for food industry, it is important understand how long-term storage affects the stability of both bioactive molecules and volatile compounds, in addition to color. To this end, we analyzed whole pomace flour from red grape during a six-month storage period in the dark, either at 4 °C or 25 °C. Methods: The specific parameters monitored of grape pomace flour included: antioxidant activity (TEAC assay), total phenol content (Folin-Ciocalteu assay), phenol composition (high performance liquid chromatography), fatty acid composition (gas chromatography-mass spectrometry), volatile compound profiles (headspace-solid phase micro-extraction) and color. Results: Prolonged storage did not significantly affect total phenol content, antioxidant activity and characterized bioactive molecules (polyphenols, fatty acids). The only detected effect of storage was a slight whitening of the pomace flour and a small increase of volatile long chain esters and ketons after 6 months at 25 °C. Conclusions: The activity of several health-relevant bioactive compounds remained stable following storage of pomace flour for 6 months at 4 °C, supporting its possible use as a functional food ingredient.

 Artículos similares

       
 
Chengfei Tao, Rongyue Sun, Yichen Wang, Yang Gao, Lin Meng, Liangbao Jiao, Shaohua Liang and Ling Chen    
This study experimentally explored the effects of equivalence ratio settings on ethanol fuel combustion oscillations with a laboratory-scale combustor. A contrary flame equivalence ratio adjusting trend was selected to investigate the dynamic characteris... ver más
Revista: Aerospace

 
Zhifu Lin, Dasheng Xiao and Hong Xiao    
Flow through complex thermodynamic machinery is intricate, incorporating turbulence, compressibility effects, combustion, and solid?fluid interactions, posing a challenge to classical physics. For example, it is not currently possible to simulate a three... ver más
Revista: Aerospace

 
Koichiro Hirose, Koji Fukudome, Hiroya Mamori and Makoto Yamamoto    
Ice crystal icing occurs in jet engine compressors, which can severely degrade jet engine performance. In this study, we developed an ice crystal trajectory simulation, considering the state changes of ice crystals with a forced convection model, indicat... ver más
Revista: Aerospace

 
Luigi Di Palma, Mariacristina Nardone, Claudio Pezzella and Marika Belardo    
This paper presents a methodology that involves the development of high-fidelity modeling and simulation procedures aimed at supporting virtual certification for crashworthiness requirements specific to tiltrotor aircraft, addressing the critical need fo... ver más
Revista: Aerospace

 
Ying-Qing Guo, Meng Li, Yang Yang, Zhao-Dong Xu and Wen-Han Xie    
As a typical intelligent device, magnetorheological (MR) dampers have been widely applied in vibration control and mitigation. However, the inherent hysteresis characteristics of magnetic materials can cause significant time delays and fluctuations, affe... ver más
Revista: Information