Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  Water  /  Vol: 10 Par: 10 (2018)  /  Artículo
ARTÍCULO
TITULO

Climate Change and Curtailment: Evaluating Water Management Practices in the Context of Changing Runoff Regimes in a Snowmelt-Dominated Basin

Amy L. Steimke    
Bangshuai Han    
Jodi S. Brandt and Alejandro N. Flores    

Resumen

Hydrologic scientists and water resource managers often focus on different facets of flow regimes in changing climates. The objective of this work is to examine potential hydrological changes in the Upper Boise River Basin, Idaho, USA in the context of biophysical variables and their impacts a key variable governing administration of water resources in the region in an integrated way. This snowmelt-dominated, mountainous watershed supplies water to a semi-arid, agriculturally intensive, but rapidly urbanizing, region. Using the Envision integrated modeling framework, we created a hydrological model to simulate hydrological response to the year 2100 using six alternative future climate trajectories. Annual discharge increased from historical values by 6?24% across all simulations (with an average 13% increase), reflecting an increase in precipitation in the climate projections. Discharge peaked 4?33 days earlier and streamflow center of timing occurred 4?17 days earlier by midcentury. Examining changes in the date junior water rights holders begin to be curtailed regionally (the Day of Allocation), we found that the it occurs at least 14 days earlier by 2100 across all simulations, with one suggesting it could occur over a month earlier. These results suggest that current methods and policies of water rights accounting and management may need to be revised moving into the future.

 Artículos similares

       
 
Venkataramana Sridhar, Hyunwoo Kang and Syed A. Ali    
The Mekong River Basin (MRB) is one of the significant river basins in the world. For political and economic reasons, it has remained mostly in its natural condition. However, with population increases and rapid industrial growth in the Mekong region, th... ver más
Revista: Water

 
Andrea Momblanch, Ian P. Holman and Sanjay K. Jain    
Global change is expected to have a strong impact in the Himalayan region. The climatic and orographic conditions result in unique modelling challenges and requirements. This paper critically appraises recent hydrological modelling applications in Himala... ver más
Revista: Water

 
Valentina Gallina, Silvia Torresan, Alex Zabeo, Jonathan Rizzi, Sandro Carniel, Mauro Sclavo, Lisa Pizzol, Antonio Marcomini and Andrea Critto    
Coastal erosion is an issue of major concern for coastal managers and is expected to increase in magnitude and severity due to global climate change. This paper analyzes the potential consequences of climate change on coastal erosion (e.g., impacts on be... ver más
Revista: Water

 
Huiying Ren, Z. Jason Hou, Mark Wigmosta, Ying Liu and L. Ruby Leung    
Changes in extreme precipitation events may require revisions of civil engineering standards to prevent water infrastructures from performing below the designated guidelines. Climate change may invalidate the intensity-duration-frequency (IDF) computatio... ver más
Revista: Water

 
Jian Hu, Da Lü, Feixiang Sun, Yihe Lü, Youjun Chen and Qingping Zhou    
Soil moisture is a central theme in eco-hydrology. Topography, soil characteristics, and vegetation types are significant factors impacting soil moisture dynamics. However, water loss (evapotranspiration and leakage) and its factors of the self-organized... ver más
Revista: Water