Resumen
The assessment of bridge functionality during earthquakes is fundamental in the evaluation of emergency response and socio-economic recovery procedures. In this regard, resilience may be considered a key parameter for decision-making procedures such as post-hazard event mitigations and recovery investments on bridges. The paper proposes a case study of a bridge configuration subjected to seismic hazard and aims to consider the effects of the soil?structure interaction on the recovery to various levels of pre-earthquake functionality. The principal outcome of the paper consists of calculating resilience as a readable finding that may have many applications for a wide range of stakeholders, such as bridge owners, transportation authorities and public administrators who can apply the outcomes in the assessment of the best recovery techniques and solutions.