Resumen
This study investigates improvements in low-cost latent heat storage material calcium chloride hexahydrate (CaCl2.6H2O). Its melting point is between 25 and 28 °C, with relatively high enthalpy (170?190 J/g); however, this phase change material (PCM) shows supercooling and phase separation. In CaCl2.6H2O incongruent melting causes lower hydrates of CaCl2 to form, which affects the overall energy storage capacity and long-term durability. In this work, PCM performance enhancement was achieved by adding SrCl2.6H2O as a nucleating agent and NaCl/KCl as a stabilizer to prevent supercooling and phase separation, respectively. We investigated the PCM preparation method and optimized the proportions of SrCl2.6H2O and NaCl/KCl. Thermal testing for 25 cycles combined with DSC and T-history testing was performed to observe changes in enthalpy, phase transitions and supercooling over the extended period of usage. X-ray diffraction was used to verify crystalline structure in the compounds. It was found that the addition of 2 wt.% of SrCl2.6H2O reduced supercooling from 12 °C to 0 °C compared to unmodified CaCl2.6H2O. The addition of 5 wt.% NaCl or KCl proved to effectively suppress separation and the melting enthalpy achieved was 169 J/g?178 J/g with congruent melting over 25 cycles, with no supercooling and almost no reduction in the latent heat.