Resumen
The use of solution-processed photovoltaics is a low cost, low material-consuming way to harvest abundant solar energy. Organic semiconductors based on perovskite or colloidal quantum dot photovoltaics have been well developed in recent years; however, stability is still an important issue for these photovoltaic devices. By combining solution processing, chemical treatment, and sintering technology, compact and efficient CdTe nanocrystal (NC) solar cells can be fabricated with high stability by optimizing the architecture of devices. Here, we review the progress on solution-processed CdTe NC-based photovoltaics. We focus particularly on NC materials and the design of devices that provide a good p?n junction quality, a graded bandgap for extending the spectrum response, and interface engineering to decrease carrier recombination. We summarize the progress in this field and give some insight into device processing, including element doping, new hole transport material application, and the design of new devices.