Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Applied Sciences  /  Vol: 9 Par: 7 (2019)  /  Artículo
ARTÍCULO
TITULO

Fault Diagnosis for a Bearing Rolling Element Using Improved VMD and HT

Haodong Liu    
Dongyan Li    
Yu Yuan    
Shengjie Zhang    
Huimin Zhao and Wu Deng    

Resumen

The variational mode decomposition (VMD) method for signal decomposition is severely affected by the number of components of the VMD method. In order to determine the decomposition modal number, K, in the VMD method, a new center frequency method of the multi-threshold is proposed in this paper. Then, an improved VMD (MTCFVMD) algorithm based on the center frequency method of the multi-threshold is obtained to decompose the vibration signal into a series of intrinsic modal functions (IMFs). The Hilbert transformation is used to calculate the envelope signal of each IMF component, and the maximum frequency value of the power spectral density is obtained in order to effectively and accurately extract the fault characteristic frequency and realize the fault diagnosis. The rolling element vibration data of the motor bearing is used to test the effectiveness of proposed methods. The experiment results show that the center frequency method of the multi-threshold can effectively determine the number, K, of decomposed modes. The proposed fault diagnosis method based on MTCFVMD and Hilbert transformation can effectively and accurately extract the fault characteristic frequency, rotation frequency, and frequency doubling, and can obtain higher diagnostic accuracy.

 Artículos similares

       
 
Yong Liu, Jialin Zhou, Dong Zhang, Shaoyu Wei, Mingshun Yang and Xinqin Gao    
To solve the problem of low diagnostic accuracy caused by the scarcity of fault samples and class imbalance in the fault diagnosis task of box-type substations, a fault diagnosis method based on self-attention improvement of conditional tabular generativ... ver más
Revista: Applied Sciences

 
Qiang Cheng, Yong Cao, Zhifeng Liu, Lingli Cui, Tao Zhang and Lei Xu    
The computer numerically controlled (CNC) system is the key functional component of CNC machine tool control systems, and the servo drive system is an important part of CNC systems. The complex working environment will lead to frequent failure of servo d... ver más
Revista: Applied Sciences

 
Hongfeng Gao, Tiexin Xu, Renlong Li and Chaozhi Cai    
Because the gearbox in transmission systems is prone to failure and the fault signal is not obvious, the fault end cannot be located. In this paper, a gearbox fault diagnosis method grounded on improved complete ensemble empirical mode decomposition with... ver más
Revista: Applied Sciences

 
Xiaojiao Gu, Yang Tian, Chi Li, Yonghe Wei and Dashuai Li    
The fault diagnosis method proposed in this paper can be applied to the diagnosis of bearings in machine tool spindle systems.
Revista: Applied Sciences

 
Qingyong Zhang, Changhuan Song and Yiqing Yuan    
Vehicle gearboxes are subject to strong noise interference during operation, and the noise in the signal affects the accuracy of fault identification. Signal denoising and fault diagnosis processes are often conducted independently, overlooking their syn... ver más
Revista: Applied Sciences