Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Water  /  Vol: 10 Par: 10 (2018)  /  Artículo
ARTÍCULO
TITULO

Arsenic Removal Using Horizontal Subsurface Flow Constructed Wetlands: A Sustainable Alternative for Arsenic-Rich Acidic Waters

Katherine Lizama-Allende    
Ignacio Jaque    
José Ayala    
Gonzalo Montes-Atenas and Eduardo Leiva    

Resumen

Constructed wetlands (CW) have been widely used to treat different types of water, including acid mine drainage (AMD). However, little is known about their performance in the removal of As from AMD. In this study, a laboratory-scale horizontal subsurface flow (HSSF) CW system was tested to evaluate its capacity to treat highly acidic, As-rich contaminated water resembling AMD. Vegetated and non-vegetated cells, having limestone or zeolite as the main supporting media, were built and operated to evaluate the effect of the media type and the presence of Phragmites australis on the removal of arsenic, iron (Fe), lead (Pb), and zinc (Zn), and on the neutralization capacity. The four types of cells were highly effective in the removal of As and Pb (removal > 99%), and Fe (removal > 98%), whereas Zn removal rates depended on the cell type. Limestone cells raised the pH from ~1.9 to ~7.5, while zeolite cells raised it to ~4. These results suggest that the media type has a key role in the neutralization capacity, and that the presence of vegetation affected mainly the removal of Zn. Knowledge from this study will contribute to guiding the implementation of HSSF CW for treating As-rich AMD.

 Artículos similares

       
 
Md. Shafiquzzaman, Amimul Ahsan, Md. Mahmudul Hasan, Abdelkader T. Ahmed and Quazi Hamidul Bari    
Higher levels of arsenic (As) and iron (Fe) in groundwater have been reported globally. This study aims to enhance our understanding of the role of naturally occurring dissolved Fe(II) in removing As from groundwater. Field experiments were conducted usi... ver más
Revista: Water

 
Aisha Khan Khanzada, Muhammad Rizwan, Hussein E. Al-Hazmi, Joanna Majtacz, Tonni Agustiono Kurniawan and Jacek Makinia    
Arsenic (As) is a prominent carcinogen component produced via both geogenic and anthropogenic processes, posing serious risks to human health. This study aimed to investigate the potential of hydrochar prepared from red macroalgae for removing As from sy... ver más
Revista: Water

 
Sabrina Sorlini, Marco Carnevale Miino, Zdravka Lazarova and Maria Cristina Collivignarelli    
Many technologies for the treatment of arsenic-containing drinking water are available, but most of them are more effective on arsenic oxidized forms. Therefore, the pre-oxidation of As3+ is necessary. The electrochemical processes represent a very promi... ver más

 
Jesús Plácido Medina Salas, Francisco Gamarra Gómez, Elisban Juani Sacari Sacari, Wilson Orlando Lanchipa Ramos, Rocío María Tamayo Calderón, Efracio Mamani Flores, Víctor Yapuchura Platero, Walter Dimas Florez Ponce de León and Elmer Marcial Limache Sandoval    
Arsenic (III) exposure, often from contaminated water, can have severe health repercussions. Chronic exposure to this toxic compound is linked to increased risks of various health issues. Various technologies exist for arsenic (III) removal from contamin... ver más
Revista: Water

 
Roya Sadat Neisan, Noori M. Cata Saady, Carlos Bazan, Sohrab Zendehboudi, Abbas Al-nayili, Bassim Abbassi and Pritha Chatterjee    
Arsenic (As), a poisonous and carcinogenic heavy metal, affects human health and the environment. Numerous technologies can remove As from drinking water. Adsorption is the most appealing option for decentralized water treatment systems (DWTS) for small ... ver más