Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Forecasting  /  Vol: 4 Par: 1 (2022)  /  Artículo
ARTÍCULO
TITULO

High-Resolution Gridded Air Temperature Data for the Urban Environment: The Milan Data Set

Giuseppe Frustaci    
Samantha Pilati    
Cristina Lavecchia and Enea Marco Montoli    

Resumen

Temperature is the most used meteorological variable for a large number of applications in urban resilience planning, but direct measurements using traditional sensors are not affordable at the usually required spatial density. On the other hand, spaceborne remote sensing provides surface temperatures at medium to high spatial resolutions, almost compatible with the needed requirements. However, in this case, limitations are represented by cloud conditions and passing times together with the fact that surface temperature is not directly comparable to air temperature. Various methodologies are possible to take benefits from both measurements and analysis methods, such as direct assimilation in numerical models, multivariate analysis, or statistical interpolation. High-resolution thermal fields in the urban environment are also obtained by numerical modelling. Several codes have been developed to resolve at some level or to parameterize the complex urban boundary layer and are used for research and applications. Downscaling techniques from global or regional models offer another possibility. In the Milan metropolitan area, given the availability of both a high-quality urban meteorological network and spaceborne land surface temperatures, and also modelling and downscaling products, these methods can be directly compared. In this paper, the comparison is performed using: the ClimaMi Project high-quality data set with the accurately selected measurements in the Milan urban canopy layer, interpolated by a cokriging technique with remote-sensed land surface temperatures to enhance spatial resolution; the UrbClim downscaled data from the reanalysis data set ERA5; a set of near-surface temperatures produced by some WRF outputs with the building environment parameterization urban scheme. The comparison with UrbClim and WRF of the cokriging interpolated data set, mainly based on the urban canopy layer measurements and covering several years, is presented and discussed in this article. This comparison emphasizes the primary relevance of surface urban measurements and highlights discrepancies with the urban modelling data sets.

Palabras claves

PÁGINAS
pp. 0 - 0
MATERIAS
ECONOMÍA
REVISTAS SIMILARES
Forecasting

 Artículos similares