Resumen
This study focuses on real-time detection of maize crop rows using deep learning technology to meet the needs of autonomous navigation for weed removal during the maize seedling stage. Crop row recognition is affected by natural factors such as soil exposure, soil straw residue, mutual shading of plant leaves, and light conditions. To address this issue, the YOLOv5s network model is improved by replacing the backbone network with the improved MobileNetv3, establishing a combination network model YOLOv5-M3 and using the convolutional block attention module (CBAM) to enhance detection accuracy. Distance-IoU Non-Maximum Suppression (DIoU-NMS) is used to improve the identification degree of the occluded targets, and knowledge distillation is used to increase the recall rate and accuracy of the model. The improved YOLOv5s target detection model is applied to the recognition and positioning of maize seedlings, and the optimal target position for weeding is obtained by max-min optimization. Experimental results show that the YOLOv5-M3 network model achieves 92.2% mean average precision (mAP) for crop targets and the recognition speed is 39 frames per second (FPS). This method has the advantages of high detection accuracy, fast speed, and is light weight and has strong adaptability and anti-interference ability. It determines the relative position of maize seedlings and the weeding machine in real time, avoiding squeezing or damaging the seedlings.