Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  Applied Sciences  /  Vol: 9 Par: 20 (2019)  /  Artículo
ARTÍCULO
TITULO

Deep Learning Object-Impulse Detection for Enhancing Leakage Detection of a Boiler Tube Using Acoustic Emission Signal

Bach Phi Duong    
Jaeyoung Kim    
Cheol-Hong Kim and Jong-Myon Kim    

Resumen

Advances in technology have enhanced the ability to detect leakages in boiler tube components in thermal power plants. As a specific issue, the interaction between the coal fuel stream and the boiler tube membrane generates random and high-amplitude impulses, which negatively affect the measured acoustic emission (AE) signal from leakages. It is essential to detect and practically handle these kinds of impulses. Based on the object detection concept, this paper proposes an impulse detection methodology that employs deep learning flexible boundary regression (DLFBR). First, the shape extraction (SE) preprocessing technique is implemented to yield the shape signal, which contains intrinsic information about the impulse from the raw AE signal. Then, DLFBR extracts and generates both the feature map and the confidence mask from the shape signal to regress a boundary box, which specifies the position of the impulse. For illustration purposes, the proposed algorithm is applied to an experimental leakage detection dataset recorded from a subcritical boiler unit with a tube membrane. Experimental results show that the proposed method is effective for detecting impulses of leakage in a boiler tube testbed, providing 99.8% average classification accuracy.

 Artículos similares

       
 
Shifeng Chen, Jialin Wang and Ketai He    
The popularization of the internet and the widespread use of smartphones have led to a rapid growth in the number of social media users. While information technology has brought convenience to people, it has also given rise to cyberbullying, which has a ... ver más
Revista: Information

 
Weiming Fan, Jiahui Yu and Zhaojie Ju    
Endoscopy, a pervasive instrument for the diagnosis and treatment of hollow anatomical structures, conventionally necessitates the arduous manual scrutiny of seasoned medical experts. Nevertheless, the recent strides in deep learning technologies proffer... ver más
Revista: Information

 
Mondher Bouazizi, Chuheng Zheng, Siyuan Yang and Tomoaki Ohtsuki    
A growing focus among scientists has been on researching the techniques of automatic detection of dementia that can be applied to the speech samples of individuals with dementia. Leveraging the rapid advancements in Deep Learning (DL) and Natural Languag... ver más
Revista: Information

 
Norah Fahd Alhussainan, Belgacem Ben Youssef and Mohamed Maher Ben Ismail    
Brain tumor diagnosis traditionally relies on the manual examination of magnetic resonance images (MRIs), a process that is prone to human error and is also time consuming. Recent advancements leverage machine learning models to categorize tumors, such a... ver más
Revista: Computation

 
Noor Ul Ain Tahir, Zuping Zhang, Muhammad Asim, Junhong Chen and Mohammed ELAffendi    
Enhancing the environmental perception of autonomous vehicles (AVs) in intelligent transportation systems requires computer vision technology to be effective in detecting objects and obstacles, particularly in adverse weather conditions. Adverse weather ... ver más
Revista: Algorithms