Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Applied Sciences  /  Vol: 10 Par: 4 (2020)  /  Artículo
ARTÍCULO
TITULO

DERN: Deep Ensemble Learning Model for Short- and Long-Term Prediction of Baltic Dry Index

Imam Mustafa Kamal    
Hyerim Bae    
Sim Sunghyun and Heesung Yun    

Resumen

The Baltic Dry Index (BDI) is a commonly utilized indicator of global shipping and trade activity. It influences stakeholders? and ship-owners? decisions respecting investments, chartering, operational plans, and export and import activities. Accurate prediction of the BDI is very challenging due to its volatility, non-stationarity, and complexity. To help stakeholders and ship-owners make sound short- and long-term maritime business decisions and avoid market risk, we performed short- and long-term predictions of BDI using an ensemble deep-learning approach. In this study, we propose to apply recurrent neural network models for BDI prediction. The state-of-the-art of sequential deep-learning models such as RNN, LSTM, and GRU are employed to predict one- and multi-step-ahead BDI values. In order to increase the accuracy, we assemble the models. In experiments, we compared our results with those of traditional methods such as ARIMA and MLP. The results showed that our proposed method outperforms ARIMA, MLP, RNN, LSTM, and GRU in both short- and long-term prediction of BDI.

 Artículos similares

       
 
Chunling Wang, Tianyi Hang, Changke Zhu and Qi Zhang    
The Czech Republic is one of the countries along the Belt and Road Initiative, and classifying land cover in the Czech Republic helps to understand the distribution of its forest resources, laying the foundation for forestry cooperation between China and... ver más
Revista: Applied Sciences

 
Antonello Pasini and Stefano Amendola    
Neural network models are often used to analyse non-linear systems; here, in cases of small datasets, we review our complementary approach to deep learning with the purpose of highlighting the importance and roles (linear, non-linear or threshold) of cer... ver más
Revista: Applied Sciences

 
Haojie Lian, Xinhao Li, Leilei Chen, Xin Wen, Mengxi Zhang, Jieyuan Zhang and Yilin Qu    
Neural radiance fields and neural reflectance fields are novel deep learning methods for generating novel views of 3D scenes from 2D images. To extend the neural scene representation techniques to complex underwater environments, beyond neural reflectanc... ver más

 
Hoan-Suk Choi and Jinhong Yang    
Suicidal ideation constitutes a critical concern in mental health, adversely affecting individuals and society at large. The early detection of such ideation is vital for providing timely support to individuals and mitigating its societal impact. With so... ver más
Revista: Applied Sciences

 
Zeqin Tian, Dengfeng Chen and Liang Zhao    
Accurate building energy consumption prediction is a crucial condition for the sustainable development of building energy management systems. However, the highly nonlinear nature of data and complex influencing factors in the energy consumption of large ... ver más
Revista: Applied Sciences