Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  Agronomy  /  Vol: 14 Par: 2 (2024)  /  Artículo
ARTÍCULO
TITULO

Influence of Soil Colloids on the Transport of Cd2+ and Pb2+ under Different pH and Ionic Strength Conditions

Zihao Ye    
Dihao Xu    
Jiawen Zhong    
Shuang Gao    
Jinjin Wang    
Yulong Zhang    
Huijuan Xu    
Yongtao Li and Wenyan Li    

Resumen

The co-transport of contaminants by soil colloids can generate substantial environmental risk, and this behavior is greatly affected by environmental conditions. In this study, AF4-ICP-MS was used to investigate the size distribution and composition of Cd/Pb-bearing colloids; saturated sand column experiments were used to investigate the impact of soil colloids on the transport of Cd/Pb under different pH and ionic strength conditions. AF4-ICP-MS characterization showed that natural colloids were primarily associated with two sizes ranges: 0.3?35 KDa (F1, fine nanoparticles) and 280 KDa?450 nm (F2, larger nanoparticles), which mainly consisted of organic matter (OM), iron (Fe), and manganese (Mn) (oxy)hydroxides and clay minerals. Fine nanoparticles could strongly adsorb Cd and Pb under all environmental conditions. Mn and Fe (oxy)hydroxides generally formed under neutral to alkaline conditions and exhibited adsorption capabilities for Cd and Pb, respectively. Transport experiments were conducted under different pH and ionic strength conditions. At pH 3.0, soil colloids had little effect on the transport of Cd2+ and Pb2+. At pH 5.0, soil colloids inhibited the transport of Cd2+ by 16.1%, and Pb2+ recovery was still 0.0%. At pH 7.0 and 9.0, soil colloids facilitated the transport of Cd2+ by 15.6% and 29.6%, facilitated Pb2+ by 1.3% and 6.4%. At an ionic strength of 0, 0.005, and 0.01 mol L-1 NaNO3, soil colloids facilitated the transport of Cd2+ by 77.7%, 45.8%, and 15.6%, only facilitated the transport of Pb2+ by 46.2% at an ionic strength of 0 mol L-1 NaNO3. At an ionic strength of 0.05 mol L-1 NaNO3, soil colloids inhibited the transport of Cd2+ and Pb2+ by 33.1% and 21.0%, respectively. The transport of Cd2+ and Pb2+ facilitated by soil colloids was clearly observed under low ionic strength and non-acidic conditions, which can generate a potential environmental risk.

 Artículos similares

       
 
Lihong Wang, Tianxiao Li, Hui Liu, Zuowei Zhang, Aizheng Yang and Hongyu Li    
Global climate warming and increased climate variability may increase the number of annual freeze?thaw cycles (FTCs) in temperate zones. The occurrence of more frequent FTCs is predicted to influence soil carbon and nitrogen cycles and increase nitrogen ... ver más
Revista: Agronomy

 
Yanan Li, Shuxia Liu, Dongmei Wang, Qi Li, Chengyu Wang and Lin Wu    
Soil improvement methods can result in changes in the microbial community in blueberry soil. Bacterial communities play an important role in soil fertilizer and plant nutrient acquisition. In this study, the response of microbial community composition, m... ver más
Revista: Agronomy

 
Qi Chen, Yingying Zhou, Yue Qi, Wen Zeng, Zhaoji Shi, Xing Liu and Jiaen Zhang    
Recent studies have indicated that the invasive apple snail (Pomacea canaliculata) exhibits tolerance to the salinity levels present in coastal agricultural soils, suggesting that apple snails could potentially invade salt-affected coastal agricultural a... ver más
Revista: Agronomy

 
Cuicui Yu, Haibin Shi, Qingfeng Miao, José Manuel Gonçalves, Yan Yan, Zhiyuan Hu, Cong Hou and Yi Zhao    
In order to investigate the influence of freshwater fish ponds on water and salt transport in cultivated wasteland in salinized areas, a typical study area was selected in the middle and lower reaches of the Hetao Irrigation District in China in the Yich... ver más
Revista: Agronomy

 
Jimmy A. Ocaña-Reyes, Marco Gutiérrez, Richard Paredes-Espinosa, Christian A. Riveros, Gloria P. Cárdenas, Nino Bravo, Astrid Quispe-Tomas, Luiz P. Amaringo-Cordova, Juan C. Ocaña-Canales, José W. Zavala-Solórzano, Hugo A. Huamaní Yupanqui, Juancarlos Cruz and Richard Solórzano-Acosta    
Tillage conservation practices (CA), traditional agriculture (TA), and liming influence soil properties and crop yield. However, it is essential to demonstrate which tillage and liming practices improve soil properties and forage corn yield. This study c... ver más
Revista: Agronomy