Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Algorithms  /  Vol: 14 Par: 6 (2021)  /  Artículo
ARTÍCULO
TITULO

Adaptive Versioning in Transactional Memory Systems

Pavan Poudel and Gokarna Sharma    

Resumen

Transactional memory has been receiving much attention from both academia and industry. In transactional memory, program code is split into transactions, blocks of code that appear to execute atomically. Transactions are executed speculatively and the speculative execution is supported through data versioning mechanism. Lazy versioning makes aborts fast but penalizes commits, whereas eager versioning makes commits fast but penalizes aborts. However, whether to use eager or lazy versioning to execute those transactions is still a hotly debated topic. Lazy versioning seems appropriate for write-dominated workloads and transactions in high contention scenarios whereas eager versioning seems appropriate for read-dominated workloads and transactions in low contention scenarios. This necessitates a priori knowledge on the workload and contention scenario to select an appropriate versioning method to achieve better performance. In this article, we present an adaptive versioning approach, called Adaptive, that dynamically switches between eager and lazy versioning at runtime, without the need of a priori knowledge on the workload and contention scenario but based on appropriate system parameters, so that the performance of a transactional memory system is always better than that is obtained using either eager or lazy versioning individually. We provide Adaptive for both persistent and non-persistent transactional memory systems using performance parameters appropriate for those systems. We implemented our adaptive versioning approach in the latest software transactional memory distribution TinySTM and extensively evaluated it through 5 micro-benchmarks and 8 complex benchmarks from STAMP and STAMPEDE suites. The results show significant benefits of our approach. Specifically, in persistent TM systems, our approach achieved performance improvements as much as 1.5× for execution time and as much as 240× for number of aborts, whereas our approach achieved performance improvements as much as 6.3× for execution time and as much as 170× for number of aborts in non-persistent transactional memory systems.