Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Water  /  Vol: 9 Par: 11 (2017)  /  Artículo
ARTÍCULO
TITULO

Runoff Simulation by SWAT Model Using High-Resolution Gridded Precipitation in the Upper Heihe River Basin, Northeastern Tibetan Plateau

Hongwei Ruan    
Songbing Zou    
Dawen Yang    
Yuhan Wang    
Zhenliang Yin    
Zhixiang Lu    
Fang Li and Baorong Xu    

Resumen

The scarcity and uneven distribution of precipitation stations in the inland river basins of the Northeastern Tibetan Plateau restrict the application of the distributed hydrological model and spatial analysis of water balance component characteristics. This study used the upper Heihe River Basin as a case study, and daily gridded precipitation data with 3 km resolution based on the spatial interpolation of gauged stations and a regional climate model were used to construct a soil and water assessment tool (SWAT) model. The aim was to validate the precision of high-resolution gridded precipitation for hydrological simulation in data-scarce regions; a scale transformation method was proposed by building virtual stations and calculating the lapse rate to overcome the defects of the SWAT model using traditional precipitation station data. The gridded precipitation was upscaled from the grid to the sub-basin scale to accurately represent sub-basin precipitation input data. A satisfactory runoff simulation was achieved, and the spatial variability of water balance components was analysed. Results show that the precipitation lapse rate ranges from 40 mm/km to 235 mm/km and decreases from the southeastern to the northwestern areas. The SWAT model achieves monthly runoff simulation compared with gauged runoff from 2000 to 2014; the determination coefficients are higher than 0.71, the Nash?Sutcliffe efficiencies are higher than 0.76, and the percentage bias is controlled within ±15%. Meadow and sparse vegetation are the major water yield landscapes, and the elevation band from 3500 m to 4500 m is the major water yield area. Precipitation and evapotranspiration present a slightly increasing trend, whereas water yield and soil water content present a slightly decreasing trend. This finding indicates that the high-resolution gridded precipitation data fully depict its spatial heterogeneity, and scale transformation significantly promotes the application of the distributed hydrological model in inland river basins. The spatial variability of water balance components can be quantified to provide references for the integrated assessment and management of basin water resources in data-scarce regions.

 Artículos similares

       
 
Yongqi Liu, Guibing Hou, Baohua Wang, Yang Xu, Rui Tian, Tao Wang and Hui Qin    
Flood control operation of cascade reservoirs is an important technology to reduce flood disasters and increase economic benefits. Flood forecast information can help reservoir managers make better use of flood resources and reduce flood risks. In this p... ver más
Revista: Water

 
Lakkana Suwannachai, Krit Sriworamas, Ounla Sivanpheng and Anongrit Kangrang    
In addition to changes in the amount of rain, changes in land use upstream are considered a factor that directly affects the maximum runoff flow in a basin, especially in areas that have experienced floods and flash floods. This research article presents... ver más
Revista: Water

 
Quanchong Su, Changlei Dai, Zheming Zhang, Shupeng Zhang, Ruotong Li and Peng Qi    
The shortage of water resources is a long-standing constraint on the development of the Chinese economy and society. In this paper, the climate change occurring in Hulan River Basin is analyzed using the data collected at Wangkui Meteorological Station f... ver más
Revista: Water

 
Zhaoguang Li, Shan Jian, Rui Gu and Jun Sun    
Few studies have been conducted to simulate watersheds with insufficient meteorological and hydrological information. The Jiyun River watershed was selected as the study area. A suitable catchment area threshold was determined by combining the river netw... ver más
Revista: Water

 
Sheng Sheng, Qihui Chen, Jingjing Li and Hua Chen    
Climate change and human activities significantly impact the hydrological cycle, particularly in regions with numerous large-scale reservoirs. Recognizing the limitations of the reservoir module in the original SWAT model, this study presents an improved... ver más
Revista: Water