Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Future Internet  /  Vol: 13 Par: 7 (2021)  /  Artículo
ARTÍCULO
TITULO

A Sentiment-Aware Contextual Model for Real-Time Disaster Prediction Using Twitter Data

Guizhe Song and Degen Huang    

Resumen

The massive amount of data generated by social media present a unique opportunity for disaster analysis. As a leading social platform, Twitter generates over 500 million Tweets each day. Due to its real-time characteristic, more agencies employ Twitter to track disaster events to make a speedy rescue plan. However, it is challenging to build an accurate predictive model to identify disaster Tweets, which may lack sufficient context due to the length limit. In addition, disaster Tweets and regular ones can be hard to distinguish because of word ambiguity. In this paper, we propose a sentiment-aware contextual model named SentiBERT-BiLSTM-CNN for disaster detection using Tweets. The proposed learning pipeline consists of SentiBERT that can generate sentimental contextual embeddings from a Tweet, a Bidirectional long short-term memory (BiLSTM) layer with attention, and a 1D convolutional layer for local feature extraction. We conduct extensive experiments to validate certain design choices of the model and compare our model with its peers. Results show that the proposed SentiBERT-BiLSTM-CNN demonstrates superior performance in the F1 score, making it a competitive model in Tweets-based disaster prediction.

 Artículos similares

       
 
Lilu Zhu, Yang Wang, Yunbo Kong, Yanfeng Hu and Kai Huang    
The integration of geospatial-analysis models is crucial for simulating complex geographic processes and phenomena. However, compared to non-geospatial models and traditional geospatial models, geospatial-analysis models face more challenges owing to ext... ver más

 
Zhiyu Lin, Shengbin Hu and Hang Lin    
While urban underground space is being built and developed at a high speed, urban flooding is also occurring gradually and frequently. Urban water, in many disasters, has intruded into underground spaces, such as subway stations, often leading to serious... ver más
Revista: Buildings

 
Jiale Qian, Yunyan Du, Fuyuan Liang, Jiawei Yi, Nan Wang, Wenna Tu, Sheng Huang, Tao Pei and Ting Ma    
Understanding the public?s diverse linguistic expressions about rainfall and flood provides a basis for flood disaster studies and enhances linguistic and cultural awareness. However, existing research tends to overlook linguistic complexity, potentially... ver más

 
Jianlong Ye, Hongchuan Yu, Gaoyang Liu, Jiong Zhou and Jiangpeng Shu    
Component identification and depth estimation are important for detecting the integrity of post-disaster structures. However, traditional manual methods might be time-consuming, labor-intensive, and influenced by subjective judgments of inspectors. Deep-... ver más
Revista: Buildings

 
Xiaotian Luo, Cong Yin, Yueqiang Sun, Weihua Bai, Wei Li and Hongqing Song    
Deep soil moisture data have wide applications in fields such as engineering construction and agricultural production. Therefore, achieving the real-time monitoring of deep soil moisture is of significant importance. Current soil monitoring methods face ... ver más
Revista: Water