Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Applied Sciences  /  Vol: 12 Par: 1 (2022)  /  Artículo
ARTÍCULO
TITULO

Modeling and Validation of a Passive Truss-Link Mechanism for Deployable Structures Considering Friction Compensation with Response Surface Methods

Han-Sol Choi    
Dong-Yeon Kim    
Jeong-Hoon Park    
Jae Hyuk Lim and Tae Seong Jang    

Resumen

In this study, a passive truss-link mechanism applicable to large-scale deployable structures was designed to achieve successful deployment in space. First, we simplified the selected truss-link mechanisms to the two-dimensional geometry and calculated the degrees of freedom (DOF) to determine whether a kinematic over-constraint occurs. The dimensions of the truss-link structure were determined through a deployment kinematic analysis. Second, a deployment simulation with the truss-link was conducted using multibody dynamics (MBD) software. Finally, a deployment test was performed considering gravity compensation, and the results were compared with those of MBD simulation. The results of the deployment simulations were confirmed to be slightly faster than those of the deployment test due to friction effects existing in the joints and gravity compensation devices. To address this issue, inverse identification of the equivalent frictional torque (EFT) at the revolute joints in the deployment test was conducted through response surface methods (RSM) combined with the central composite design technique. As a result, we confirmed that the deployment angle history of the deployment simulation was similar to that of the deployment test.