Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Algorithms  /  Vol: 12 Par: 10 (2019)  /  Artículo
ARTÍCULO
TITULO

A Machine Learning Approach to Algorithm Selection for Exact Computation of Treewidth

Borislav Slavchev    
Evelina Masliankova and Steven Kelk    

Resumen

We present an algorithm selection framework based on machine learning for the exact computation of treewidth, an intensively studied graph parameter that is NP-hard to compute. Specifically, we analyse the comparative performance of three state-of-the-art exact treewidth algorithms on a wide array of graphs and use this information to predict which of the algorithms, on a graph by graph basis, will compute the treewidth the quickest. Experimental results show that the proposed meta-algorithm outperforms existing methods on benchmark instances on all three performance metrics we use: in a nutshell, it computes treewidth faster than any single algorithm in isolation. We analyse our results to derive insights about graph feature importance and the strengths and weaknesses of the algorithms we used. Our results are further evidence of the advantages to be gained by strategically blending machine learning and combinatorial optimisation approaches within a hybrid algorithmic framework. The machine learning model we use is intentionally simple to emphasise that speedup can already be obtained without having to engage in the full complexities of machine learning engineering. We reflect on how future work could extend this simple but effective, proof-of-concept by deploying more sophisticated machine learning models.

 Artículos similares

       
 
Zhenzhen Di, Miao Chang, Peikun Guo, Yang Li and Yin Chang    
Most worldwide industrial wastewater, including in China, is still directly discharged to aquatic environments without adequate treatment. Because of a lack of data and few methods, the relationships between pollutants discharged in wastewater and those ... ver más
Revista: Water

 
Ognjen Radovic,Srdan Marinkovic,Jelena Radojicic    
Credit scoring attracts special attention of financial institutions. In recent years, deep learning methods have been particularly interesting. In this paper, we compare the performance of ensemble deep learning methods based on decision trees with the b... ver más

 
Pablo de Llano, Carlos Piñeiro, Manuel Rodríguez     Pág. pp. 163 - 198
This paper offers a comparative analysis of the effectiveness of eight popular forecasting methods: univariate, linear, discriminate and logit regression; recursive partitioning, rough sets, artificial neural networks, and DEA. Our goals are: clarify the... ver más

 
Hugo López-Fernández     Pág. 22 - 25
Mass spectrometry using matrix assisted laser desorption ionization coupled to time of flight analyzers (MALDI-TOF MS) has become popular during the last decade due to its high speed, sensitivity and robustness for detecting proteins and peptides. This a... ver más

 
Rejath Jose, Faiz Syed, Anvin Thomas and Milan Toma    
The advancement of machine learning in healthcare offers significant potential for enhancing disease prediction and management. This study harnesses the PyCaret library?a Python-based machine learning toolkit?to construct and refine predictive models for... ver más
Revista: Applied Sciences