Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  Algorithms  /  Vol: 13 Par: 4 (2020)  /  Artículo
ARTÍCULO
TITULO

Ensemble Deep Learning for Multilabel Binary Classification of User-Generated Content

Giannis Haralabopoulos    
Ioannis Anagnostopoulos and Derek McAuley    

Resumen

Sentiment analysis usually refers to the analysis of human-generated content via a polarity filter. Affective computing deals with the exact emotions conveyed through information. Emotional information most frequently cannot be accurately described by a single emotion class. Multilabel classifiers can categorize human-generated content in multiple emotional classes. Ensemble learning can improve the statistical, computational and representation aspects of such classifiers. We present a baseline stacked ensemble and propose a weighted ensemble. Our proposed weighted ensemble can use multiple classifiers to improve classification results without hyperparameter tuning or data overfitting. We evaluate our ensemble models with two datasets. The first dataset is from Semeval2018-Task 1 and contains almost 7000 Tweets, labeled with 11 sentiment classes. The second dataset is the Toxic Comment Dataset with more than 150,000 comments, labeled with six different levels of abuse or harassment. Our results suggest that ensemble learning improves classification results by 1.5%" role="presentation" style="position: relative;">1.5%1.5% 1.5 % to 5.4%" role="presentation" style="position: relative;">5.4%5.4% 5.4 % .

 Artículos similares

       
 
Chunling Wang, Tianyi Hang, Changke Zhu and Qi Zhang    
The Czech Republic is one of the countries along the Belt and Road Initiative, and classifying land cover in the Czech Republic helps to understand the distribution of its forest resources, laying the foundation for forestry cooperation between China and... ver más
Revista: Applied Sciences

 
Antonello Pasini and Stefano Amendola    
Neural network models are often used to analyse non-linear systems; here, in cases of small datasets, we review our complementary approach to deep learning with the purpose of highlighting the importance and roles (linear, non-linear or threshold) of cer... ver más
Revista: Applied Sciences

 
Haojie Lian, Xinhao Li, Leilei Chen, Xin Wen, Mengxi Zhang, Jieyuan Zhang and Yilin Qu    
Neural radiance fields and neural reflectance fields are novel deep learning methods for generating novel views of 3D scenes from 2D images. To extend the neural scene representation techniques to complex underwater environments, beyond neural reflectanc... ver más

 
Hoan-Suk Choi and Jinhong Yang    
Suicidal ideation constitutes a critical concern in mental health, adversely affecting individuals and society at large. The early detection of such ideation is vital for providing timely support to individuals and mitigating its societal impact. With so... ver más
Revista: Applied Sciences

 
Zeqin Tian, Dengfeng Chen and Liang Zhao    
Accurate building energy consumption prediction is a crucial condition for the sustainable development of building energy management systems. However, the highly nonlinear nature of data and complex influencing factors in the energy consumption of large ... ver más
Revista: Applied Sciences