Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Future Internet  /  Vol: 15 Par: 8 (2023)  /  Artículo
ARTÍCULO
TITULO

An Improved Deep Learning Model for DDoS Detection Based on Hybrid Stacked Autoencoder and Checkpoint Network

Amthal K. Mousa and Mohammed Najm Abdullah    

Resumen

The software defined network (SDN) collects network traffic data and proactively manages networks. SDN?s programmability makes it excellent for developing distributed applications, cybersecurity, and decentralized network control in multitenant data centers. This exceptional architecture is vulnerable to security concerns, such as distributed denial of service (DDoS) attacks. DDoS attacks can be very serious due to the fact that they prevent authentic users from accessing, temporarily or indefinitely, resources they would normally expect to have. Moreover, there are continuous efforts from attackers to produce new techniques to avoid detection. Furthermore, many existing DDoS detection methods now in use have a high potential for producing false positives. This motivates us to provide an overview of the research studies that have already been conducted in this area and point out the strengths and weaknesses of each of those approaches. Hence, adopting an optimal detection method is necessary to overcome these issues. Thus, it is crucial to accurately detect abnormal flows to maintain the availability and security of the network. In this work, we propose hybrid deep learning algorithms, which are the long short-term memory network (LSTM) and convolutional neural network (CNN) with a stack autoencoder for DDoS attack detection and checkpoint network, which is a fault tolerance strategy for long-running processes. The proposed approach is trained and tested with the aid of two DDoS attack datasets in the SDN environment: the DDoS attack SDN dataset and Botnet dataset. The results show that the proposed model achieves a very high accuracy, reaching 99.99% in training, 99.92% in validation, and 100% in precision, recall, and F1 score with the DDoS attack SDN dataset. Also, it achieves 100% in all metrics with the Botnet dataset. Experimental results reveal that our proposed model has a high feature extraction ability and high performance in detecting attacks. All performance metrics indicate that the proposed approach is appropriate for a real-world flow detection environment.

 Artículos similares

       
 
Dong Jiang, Wenji Zhao, Yanhui Wang and Biyu Wan    
Traffic congestion is a globally widespread problem that causes significant economic losses, delays, and environmental impacts. Monitoring traffic conditions and analyzing congestion factors are the first, challenging steps in optimizing traffic congesti... ver más

 
Christine Dewi, Danny Manongga, Hendry, Evangs Mailoa and Kristoko Dwi Hartomo    
Face mask detection is a technological application that employs computer vision methodologies to ascertain the presence or absence of a face mask on an individual depicted in an image or video. This technology gained significant attention and adoption du... ver más

 
Yee Sye Lee, Ali Rashidi, Amin Talei and Daniel Kong    
In recent years, mixed reality (MR) technology has gained popularity in construction management due to its real-time visualisation capability to facilitate on-site decision-making tasks. The semantic segmentation of building components provides an attrac... ver más
Revista: Buildings

 
Kaito Furuhashi and Takashi Nakaya    
Global warming is currently progressing worldwide, and it is important to control greenhouse gas emissions from the perspective of adaptation and mitigation. Occupant behavior is highly individualized and must be analyzed to accurately determine a buildi... ver más
Revista: Buildings

 
Lan Wang, Mingjiang Xie, Min Pan, Feng He, Bing Yang, Zhigang Gong, Xuke Wu, Mingsheng Shang and Kun Shan    
Harmful algal blooms (HABs) have been deteriorating global water bodies, and the accurate prediction of algal dynamics using the modelling method is a challenging research area. High-frequency monitoring and deep learning technology have opened up new ho... ver más
Revista: Water