Redirigiendo al acceso original de articulo en 18 segundos...
ARTÍCULO
TITULO

Analysis, Simulation and Experimental Study of the Tensile Stress Calibration of Ceramic Cylindrical Pressure Housings

Peng Wang    
Yanhui Wang    
Shaoqiong Yang    
Wendong Niu    
Xuehao Wang and Penghao Li    

Resumen

Engineering ceramics have extremely high values for both specific modulus and specific compressive strength, making them one of the most promising materials for enhancing the carrying capability of full ocean depth (FOD) submersibles. However, due to the low tensile strength of most ceramic materials, the tensile stress generated at the contact surface of ceramic pressure housings under hydrostatic pressure may exceed the material?s limits and thus lead to cracking failure. Currently, there are no valid calibration methods for the tensile stress caused by material discontinuities at the contact surface. In this paper, an approximate model is established based on contact mechanics. The absolute error of the approximate model, as verified by the simulation results for nine groups of ceramic pressure housings, does not exceed 14.2%. It is also concluded that the smaller the difference in Young?s modulus between the ceramics and metals, the higher the tensile strength safety factor. In addition, two hydrostatic pressure experiments were carried out to further verify the results of the approximate model and the numerical solutions. The approximate model is oriented to the reliable design of ceramic pressure housings. It will play an important role in improving the carrying capacity and observation capability of FOD submersibles.

 Artículos similares

       
 
Mengxiang Li, Guo Wang, Kun Liu, Yue Lu and Jiaxia Wang    
The safety assessment of ship cargo securing systems is of significant importance in preventing casualties, vessel instability, and economic losses resulting from the failure of securing systems during transportation in adverse sea conditions. In this st... ver más

 
Zhenyu Feng, Qianqian You, Kun Chen, Houjin Song and Haoxuan Peng    
Evacuation simulation is an important method for studying and evaluating the safety of passenger evacuation, and the key lies in whether it can accurately predict personnel evacuation behavior in different environments. The existing models have good adap... ver más
Revista: Aerospace

 
Shengtao Chen, Yuhan Zhang, Tianyu Su and Yongjun Gong    
The initial running speed of the pig during gas?liquid two-phase pipeline pigging can significantly influence the velocities of both gas and liquid phases within the pipeline. However, due to the complexity and limited understanding of these velocity var... ver más

 
Chunyun Shen, Jiahao Zhang, Chenglin Ding and Shiming Wang    
By combining computational fluid dynamics (CFD) and surrogate model method (SMM), the relationship between turbine performance and airfoil shape and flow characteristics at low flow rate is revealed. In this paper, the flow velocity tidal energy airfoil ... ver más

 
Romain Amyot, Noriyuki Kodera and Holger Flechsig    
Simulation of atomic force microscopy (AFM) computationally emulates experimental scanning of a biomolecular structure to produce topographic images that can be correlated with measured images. Its application to the enormous amount of available high-res... ver más
Revista: Algorithms