Resumen
Unmanned Surface Vehicles (USVs) are intelligent machines that have been widely studied in recent years. The safety of USVs? activities is a priority issue in their applications; one effective method is to delimit an exclusive safety domain around the USV. Besides considering collision avoidance, the safety domain should satisfy the requirements of encounter situations in the COLREGs (International Regulations for Preventing Collisions at Sea) as well. Whereas the model providing the safety domain for the USVs is defined through the experience of the manned ships, a specific model for USVs has been rarely studied. A dynamic navigation safety domain (DNSD) for USVs was proposed in this paper. To construct the model, the essential factors that could affect the navigation safety of the USVs were extracted via a rough set, and the extension functions of these factors were carried out. The DNSD was employed in various situations and compared with the ship domain models of common ships. It was found that the domain boundary can be automatically corrected according to the change in the working conditions when the DNSD is in use. Compared with the Fujii and Coldwell models, the DNSD can provide a larger safety area for a USV?s action of collision avoidance.