Resumen
Flavan-3-ols are monomers of Proanthocyanidins (PAs), which are important polyphenolic compounds in grapes. Previous studies had shown that VvMYBPA2 was closely related to grape flavan-3-ol monomers biosynthesis, but its regulatory network is still unclear. Here, we found that the contents of (+)-catechin and (-)-epicatechin, the enzyme activities of anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) and the expression of VvANR and VvLAR1 were increased in the VvMYBPA2 overexpression grape leaves compared to the control. It was proved that VvMYBPA2 protein interacted with VvWDR1 and VvWDR1 protein interacted with VvMYC2 by yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC). The promoters of VvANR and VvLAR1 were bound by VvMYBPA2 using yeast one-hybrid (Y1H) assay. These results suggested that VvMYBPA2 could form a trimeric complex with VvWDR1 and VvMYC2 and jointly regulated the expression of flavan-3-ol monomers related genes VvANR and VvLAR1, thereby affecting the enzyme activities of ANR and LAR and ultimately regulating the contents of flavan-3-ols.