Redirigiendo al acceso original de articulo en 20 segundos...
Inicio  /  Applied Sciences  /  Vol: 10 Par: 24 (2020)  /  Artículo
ARTÍCULO
TITULO

Effectiveness of Machine Learning Approaches Towards Credibility Assessment of Crowdfunding Projects for Reliable Recommendations

Wafa Shafqat    
Yung-Cheol Byun and Namje Park    

Resumen

Recommendation systems aim to decipher user interests, preferences, and behavioral patterns automatically. However, it becomes trickier to make the most trustworthy and reliable recommendation to users, especially when their hardest earned money is at risk. The credibility of the recommendation is of magnificent importance in crowdfunding project recommendations. This research work devises a hybrid machine learning-based approach for credible crowdfunding projects? recommendations by wisely incorporating backers? sentiments and other influential features. The proposed model has four modules: a feature extraction module, a hybrid LDA-LSTM (latent Dirichlet allocation and long short-term memory) based latent topics evaluation module, credibility formulation, and recommendation module. The credibility analysis proffers a process of correlating project creator?s proficiency, reviewers? sentiments, and their influence to estimate a project?s authenticity level that makes our model robust to unauthentic and untrustworthy projects and profiles. The recommendation module selects projects based on the user?s interests with the highest credible scores and recommends them. The proposed recommendation method harnesses numeric data and sentiment expressions linked with comments, backers? preferences, profile data, and the creator?s credibility for quantitative examination of several alternative projects. The proposed model?s evaluation depicts that credibility assessment based on the hybrid machine learning approach contributes efficient results (with 98% accuracy) than existing recommendation models. We have also evaluated our credibility assessment technique on different categories of the projects, i.e., suspended, canceled, delivered, and never delivered projects, and achieved satisfactory outcomes, i.e., 93%, 84%, 58%, and 93%, projects respectively accurately classify into our desired range of credibility.

 Artículos similares

       
 
Shweta More, Moad Idrissi, Haitham Mahmoud and A. Taufiq Asyhari    
The rapid proliferation of new technologies such as Internet of Things (IoT), cloud computing, virtualization, and smart devices has led to a massive annual production of over 400 zettabytes of network traffic data. As a result, it is crucial for compani... ver más
Revista: Algorithms

 
Liu Yang, Gang Wang and Hongjun Wang    
Aligned with global Sustainable Development Goals (SDGs) and multidisciplinary approaches integrating AI with sustainability, this research introduces an innovative AI framework for analyzing Modern French Poetry. It applies feature extraction techniques... ver más
Revista: Information

 
Rola R. Hassan, Manar Abu Talib, Fikri Dweiri and Jorge Roman    
Implementing the European Foundation for Quality Management (EFQM) business excellence model in organizations is time- and cost-consuming. The integration of artificial intelligence (AI) into the EFQM business excellence model is a promising approach to ... ver más
Revista: Applied Sciences

 
Christogonus U. Onukwube, Daniel O. Aikhuele and Shahryar Sorooshian    
Water distribution networks are complex systems that aid in the delivery of water to residential and non-residential areas. However, the networks can be affected by different types of faults, which could lead to the wastage of treated water. As such, the... ver más
Revista: Applied Sciences

 
Haoyu Lin, Pengkun Quan, Zhuo Liang, Dongbo Wei and Shichun Di    
With the rise of electric vehicles, autonomous driving, and valet parking technologies, considerable research has been dedicated to automatic charging solutions. While the current focus lies on charging robot design and the visual positioning of charging... ver más
Revista: Applied Sciences