Redirigiendo al acceso original de articulo en 17 segundos...
ARTÍCULO
TITULO

Efficient and High Path Quality Autonomous Exploration and Trajectory Planning of UAV in an Unknown Environment

Leyang Zhao    
Li Yan    
Xiao Hu    
Jinbiao Yuan and Zhenbao Liu    

Resumen

The ability of an autonomous Unmanned Aerial Vehicle (UAV) in an unknown environment is a prerequisite for its execution of complex tasks and is the main research direction in related fields. The autonomous navigation of UAVs in unknown environments requires solving the problem of autonomous exploration of the surrounding environment and path planning, which determines whether the drones can complete mission-based flights safely and efficiently. Existing UAV autonomous flight systems hardly perform well in terms of efficient exploration and flight trajectory quality. This paper establishes an integrated solution for autonomous exploration and path planning. In terms of autonomous exploration, frontier-based and sampling-based exploration strategies are integrated to achieve fast and effective exploration performance. In the study of path planning in complex environments, an advanced Rapidly Exploring Random Tree (RRT) algorithm combining the adaptive weights and dynamic step size is proposed, which effectively solves the problem of balancing flight time and trajectory quality. Then, this paper uses the Hermite difference polynomial to optimization the trajectory generated by the RRT algorithm. We named proposed UAV autonomous flight system as Frontier and Sampling-based Exploration and Advanced RRT Planner system (FSEPlanner). Simulation performs in both apartment and maze environment, and results show that the proposed FSEPlanner algorithm achieves greatly improved time consumption and path distances, and the smoothed path is more in line with the actual flight needs of a UAV.

 Artículos similares

       
 
Zhixin Li, Song Ji, Dazhao Fan, Zhen Yan, Fengyi Wang and Ren Wang    
Accurate building geometry information is crucial for urban planning in constrained spaces, fueling the growing demand for large-scale, high-precision 3D city modeling. Traditional methods like oblique photogrammetry and LiDAR prove time consuming and ex... ver más

 
Tianjie Fu, Peiyu Li, Chenke Shi and Youzhu Liu    
The growing demand for high-quality steel across various industries has led to an increasing need for superior-grade steel. The quality of slab ingots is a pivotal factor influencing the final quality of steel production. However, the current level of in... ver más
Revista: Future Internet

 
Luca M. Ofiera, Purnendu Bose and Christian Kazner    
Constructed wetlands are a versatile technology for various treatment approaches, especially in emerging countries. The research aims to study and optimize the hybridizing process of a vertical subsurface flow constructed wetland with adsorption technolo... ver más
Revista: Water

 
Li Li and Kyung Soo Jun    
River flood routing computes changes in the shape of a flood wave over time as it travels downstream along a river. Conventional flood routing models, especially hydrodynamic models, require a high quality and quantity of input data, such as measured hyd... ver más
Revista: Water

 
Tianyi Yang, Marcus White, Ruby Lipson-Smith, Michelle M. Shannon and Mehrnoush Latifi    
Changing the physical environment of healthcare facilities can positively impact patient outcomes. Virtual reality (VR) offers the potential to understand how healthcare environment design impacts users? perception, particularly among those with brain in... ver más
Revista: Buildings