Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  Infrastructures  /  Vol: 7 Par: 5 (2022)  /  Artículo
ARTÍCULO
TITULO

State-of-the-Art Review on Probabilistic Seismic Demand Models of Bridges: Machine-Learning Application

Farahnaz Soleimani and Donya Hajializadeh    

Resumen

Optimizing the serviceability of highway bridges is a fundamental prerequisite to provide proper infrastructure safety and emergency responses after natural hazards such as an earthquake. In this regard, fragility and resilience assessment have emerged as important means of describing the potential seismic risk and recovery process under uncertain inputs. Generating such assessments requires estimating the seismic demand of bridge components consisting of piers, deck, abutment, bearing, etc. The conventional probabilistic model to estimate the seismic demands was introduced more than two decades ago. Despite an extensive body of research ever attempting to improve demand models, the univariate demand model is the most common method used in practice. This work presents a comprehensive review of the evolution of demand models capturing machine-learning-based methodologies and their advantage in comparison to the conventional model. This study sheds light on understanding the existing demand models and their associated attributes along with their limitations. This study also provides an appraisal of the application of probabilistic demand models to generate fragility curves and subsequent application in the resilience assessment of bridges. Moreover, as a sound reference, this study highlights opportunities for future development leading to enhancement of the performance and applicability of the demand models.

 Artículos similares

       
 
Mahmud Hossain, Golam Kayas, Ragib Hasan, Anthony Skjellum, Shahid Noor and S. M. Riazul Islam    
Driven by the rapid escalation of its utilization, as well as ramping commercialization, Internet of Things (IoT) devices increasingly face security threats. Apart from denial of service, privacy, and safety concerns, compromised devices can be used as e... ver más
Revista: Future Internet

 
Giampaolo D?Alessandro, Pantea Tavakolian and Stefano Sfarra    
The present review aims to analyze the application of infrared thermal imaging, aided by bio-heat models, as a tool for the diagnosis of skin and breast cancers. The state of the art of the related technical procedures, bio-heat transfer modeling, and th... ver más
Revista: Applied Sciences

 
Zequan Zhao, Qiliang Zhu, Yifei Wang, Muhammad Shoaib, Xia Cao and Ning Wang    
Array-designed triboelectric nanogenerators (AD-TENGs) have firmly established themselves as state-of-the-art technologies for adeptly converting mechanical interactions into electrical signals. Central to the AD-TENG?s prowess is its inherent modularity... ver más

 
Pedro M. Batista Santos and Tiago A. Santos    
This paper presents the comprehensive state-of-the-art on the challenges that short sea shipping currently faces across the world. The concept and its relationship with coastal shipping are introduced, followed by a review of the EU policies for short se... ver más

 
Jinjia Zhou and Jian Yang    
Compressive Sensing (CS) has emerged as a transformative technique in image compression, offering innovative solutions to challenges in efficient signal representation and acquisition. This paper provides a comprehensive exploration of the key components... ver más
Revista: Information