Resumen
In the industrial and sales processes, dosing systems of various constructions, whose operation is based on mechanical vibrations (vibratory feeders), are very often used. These systems face many problems, such as resonant frequency, flow instability of dosed product, instability of mechanical vibration amplitude, etc., because most of them are based on controlling the frequency of the electrical signal of the supply voltage. All these factors negatively affect the durability and reliability of the vibratory feeder systems. During this research, an automatic control system for vibratory feeder was created, whose control process is based on the modification of the sinusoidal signal (partially changing the signal area). In addition, such a way of controlling the vibratory feeder is not discussed in the literature. As the research conducted in this paper has shown, while using sinusoidal signal modification it was possible to achieve a stable flow rate of bulk production (the flow rate varied from 0 to 100 g/s when the frequency of mechanical vibrations changed from 1 to 50 Hz) and a stable amplitude of mechanical oscillations was achieved and equal to 1.5 mm. The control system is based on the microcontroller PIC24FV32KA302 for which the special software was developed. The thyristor BTA16 used for voltage modification of the sinusoidal signal made it possible to ensure the reliable control of the sinusoidal voltage modification process.