Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Applied Sciences  /  Vol: 9 Par: 16 (2019)  /  Artículo
ARTÍCULO
TITULO

Calibration Method for Angular Positioning Deviation of a High-Precision Rotary Table Based on the Laser Tracer Multi-Station Measurement System

Hongfang Chen    
Bo Jiang    
Hu Lin    
Shuang Zhang    
Zhaoyao Shi    
Huixu Song and Yanqiang Sun    

Resumen

This paper proposes a calibration method for angular positioning deviation of a high-precision rotary table based on the laser tracer multi-station measurement system. The algorithm error of the calibration method for angular positioning deviation of a high-precision rotary table based on the laser tracer multi-station measurement system was mainly discussed. During the experiments, the laser tracer was fixed on the work surface of the rotary table, and the rotary was fixed on the work surface of the coordinate measurement machine (CMM). The rotary table was rotated with the same angular interval. In this case, an optimization method for calculating the coordinates of a laser tracer station by using Levenberg?Marquardt algorithm and singular value decomposition transform was proposed. Then, the angular positioning deviation of the rotary table was calibrated by an established geometric relationship model between the coordinates of laser tracer stations and the rotation angle of the rotary table. The angular positioning deviation of the high-precision rotary table was as low as ±0.9?, and the error of the calibration method was ±0.4?. The experimental results proved the feasibility of the proposed calibration method. The calibration method proposed in this paper is suitable for the case that the rotary table is not linked with the CMM, especially for large high-precision rotary tables.

 Artículos similares

       
 
Ninghao Shi, Yingze Zhao, Baixuan Zhao, Kaifeng Zheng, Yupeng Chen, Yuxin Qin, Weibiao Wang, Jinguang Lv and Jingqiu Liang    
Infrared multispectral imaging technology can achieve the long-distance, wide-ranging and fast detection of target gas, and has been widely used in the fields of dangerous-gas detection and environmental monitoring. However, due to the difficulty in acqu... ver más
Revista: Applied Sciences

 
Fangzhou Xu, Yuxuan Zhang, Zelin Zhang and Nan Geng    
To improve the accuracy of non-contact measurements of animal body size and reduce costs, a new monocular camera scanning equipment based on structured light was built with a matched point cloud generation algorithm. Firstly, using the structured light 3... ver más
Revista: Applied Sciences

 
Yong Liu, Xiaohui Yan, Wenying Du, Tianqi Zhang, Xiaopeng Bai and Ruichuan Nan    
The current work proposes a novel super-resolution convolutional transposed network (SRCTN) deep learning architecture for downscaling daily climatic variables. The algorithm was established based on a super-resolution convolutional neural network with t... ver más
Revista: Water

 
Yongen Lin, Dagang Wang, Tao Jiang and Aiqing Kang    
Reliable streamflow forecasting is a determining factor for water resource planning and flood control. To better understand the strengths and weaknesses of newly proposed methods in streamflow forecasting and facilitate comparisons of different research ... ver más
Revista: Water

 
Anthony A. Amori, Olufemi P. Abimbola, Trenton E. Franz, Daran Rudnick, Javed Iqbal and Haishun Yang    
Model calibration is essential for acceptable model performance and applications. The Hybrid-Maize model, developed at the University of Nebraska-Lincoln, is a process-based crop simulation model that simulates maize growth as a function of crop and fiel... ver más
Revista: Water