Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  Hydrology  /  Vol: 6 Par: 3 (2019)  /  Artículo
ARTÍCULO
TITULO

Relative Effect of Location Alternatives on Urban Hydrology. The Case of Greater Port-Harcourt Watershed, Niger Delta

Nimi G. Dan-Jumbo and Marc Metzger    

Resumen

Globally, cities in developing countries are urbanising at alarming rates, and a major concern to hydrologists and planners are the options that affect the hydrologic functioning of watersheds. Environmental impact assessment (EIA) has been recognised as a key sustainable development tool for mitigating the adverse impacts of planned developments, however, research has shown that planned developments can affect people and the environment significantly due to urban flooding that arises from increased paved surfaces. Flooding is a major sustainable development issue, which often result from increased paved surfaces and decreased interception losses due to urbanisation and deforestation respectively. To date, several environmental assessment studies have advanced the concept of alternatives, yet, only a small number of hydrologic studies have discussed how the location of paved surface could influence catchment runoff. Specifically, research exploring the effects of location alternative in EIAs on urban hydrology is very rare. The Greater Port-Harcourt City (GPH) development established to meet the growth needs in Port-Harcourt city (in the Niger Delta) is a compelling example. The aim of this research is to examine the relative effect of EIA alternatives in three different locations on urban hydrology. The Hydrologic Engineering Centre?s hydrologic modelling system (HEC-HMS) hydrodynamic model was used to generate data for comparing runoff in three different basins. HEC-HMS software combine models that estimate: Loss, transformation, base flow and channel routing. Results reveal that developments with the same spatial extent had different effects on the hydrology of the basins and sub-basins in the area. Findings in this study suggest that basin size rather than location of the paved surface was the main factor influencing the hydrology of the watershed.

 Artículos similares

       
 
Riguga Su, Chaobin Yang, Zhibo Xu, Tingwen Luo, Lilong Yang, Lifeng Liu and Chao Wang    
Urban landscape has important effects on urban climate, and the local climate zone (LCZ) framework has been widely applied in related studies. However, few studies have compared the relative contributions of LCZ on the urban thermal environment across di... ver más

 
Shengbo Hu, Zhijun Li, Peng Lu, Qingkai Wang, Jie Wei and Qiuming Zhao    
In their natural state, snow crystals are influenced by the atmosphere during formation and multiple factors after landing, resulting in varying particle sizes and unstable particle morphologies that are challenging to quantify. The current research main... ver más
Revista: Water

 
Ali Uzunlar and Muhammet Omer Dis    
The hydrological cycle should be scrutinized and investigated under recent climate change scenarios to ensure global water management and to increase its utilization. Although the FAO proposed the use of the Penman?Monteith (PM) equation worldwide to pre... ver más
Revista: Water

 
Donghae Baek, Il Won Seo, Jun Song Kim, Sung Hyun Jung and Yuyoung Choi    
The dispersion coefficients are crucial in understanding the spreading of pollutant clouds in river flows, particularly in the context of the depth-averaged two-dimensional (2D) advection?dispersion equation (ADE). Traditionally, the 2D stream-tube routi... ver más
Revista: Water

 
Junyi Chen, Chao Zhang, Yun Liu, Jie Tian and Jianbo Guo    
Preventing the rebound of black and odorous water bodies is critical for improving the ecological environment of water bodies. This study examined the effect and underlying mechanism of in-situ improvement of the sediment microenvironment by nitrate in t... ver más
Revista: Water