Redirigiendo al acceso original de articulo en 23 segundos...
ARTÍCULO
TITULO

Object Detection and Classification Based on YOLO-V5 with Improved Maritime Dataset

Jun-Hwa Kim    
Namho Kim    
Yong Woon Park and Chee Sun Won    

Resumen

SMD (Singapore Maritime Dataset) is a public dataset with annotated videos, and it is almost unique in the training of deep neural networks (DNN) for the recognition of maritime objects. However, there are noisy labels and imprecisely located bounding boxes in the ground truth of the SMD. In this paper, for the benchmark of DNN algorithms, we correct the annotations of the SMD dataset and present an improved version, which we coined SMD-Plus. We also propose augmentation techniques designed especially for the SMD-Plus. More specifically, an online transformation of training images via Copy & Paste is applied to solve the class-imbalance problem in the training dataset. Furthermore, the mix-up technique is adopted in addition to the basic augmentation techniques for YOLO-V5. Experimental results show that the detection and classification performance of the modified YOLO-V5 with the SMD-Plus has improved in comparison to the original YOLO-V5. The ground truth of the SMD-Plus and our experimental results are available for download.

 Artículos similares

       
 
Yuchen Dong, Heng Zhou, Chengyang Li, Junjie Xie, Yongqiang Xie and Zhongbo Li    
Camouflaged object detection (COD) is an arduous challenge due to the striking resemblance of camouflaged objects to their surroundings. The abundance of similar background information can significantly impede the efficiency of camouflaged object detecti... ver más
Revista: Applied Sciences

 
Yiming Mo, Lei Wang, Wenqing Hong, Congzhen Chu, Peigen Li and Haiting Xia    
The intrusion of foreign objects on airport runways during aircraft takeoff and landing poses a significant safety threat to air transportation. Small-scale Foreign Object Debris (FOD) cannot be ruled out on time by traditional manual inspection, and the... ver más
Revista: Applied Sciences

 
Ugur Akis and Serkan Dislitas    
In applications reliant on image processing, the management of lighting holds significance for both precise object detection and efficient energy utilization. Conventionally, lighting control involves manual switching, timed activation or automated adjus... ver más
Revista: Applied Sciences

 
Xinmin Li, Yingkun Wei, Jiahui Li, Wenwen Duan, Xiaoqiang Zhang and Yi Huang    
Object detection in unmanned aerial vehicle (UAV) images has become a popular research topic in recent years. However, UAV images are captured from high altitudes with a large proportion of small objects and dense object regions, posing a significant cha... ver más
Revista: Applied Sciences

 
Noor Ul Ain Tahir, Zuping Zhang, Muhammad Asim, Junhong Chen and Mohammed ELAffendi    
Enhancing the environmental perception of autonomous vehicles (AVs) in intelligent transportation systems requires computer vision technology to be effective in detecting objects and obstacles, particularly in adverse weather conditions. Adverse weather ... ver más
Revista: Algorithms