Resumen
Keratin is a tough fibrous structural protein that is difficult to digest with pepsin and trypsin because of the presence of a large number of disulfide bonds. Keratin is widely found in agricultural waste. In recent years, especially, the development of the poultry industry has resulted in a large accumulation of feather keratin resources, which seriously pollute the environment. Keratinase can specifically attack disulfide bridges in keratin, converting them from complex to simplified forms. The keratinase thermal stability has drawn attention to various biotechnological industries. It is significant to identify keratinases and improve their thermostability from microorganism in extreme environments. In this study, the keratinases DgoKerA was identified in Deinococcus gobiensis I-0 from the Gobi desert. The amino acid sequence analysis revealed that DgoKerA was 58.68% identical to the keratinase MtaKerA from M. thermophila WR-220 and 40.94% identical to the classical BliKerA sequence from B. licheniformis PWD-1. In vitro enzyme activity analysis showed that DgoKerA exhibited an optimum temperature of 60 °C, an optimum pH of 7 and a specific enzyme activity of 51147 U/mg. DgoKerA can degrade intact feathers at 60 °C and has good potential for industrial applications. The molecular modification of DgoKerA was also carried out using site-directed mutagenesis, in which the mutant A350S enzyme activity was increased by nearly 30%, and the results provide a theoretical basis for the development and optimization of keratinase applications.