Resumen
In this paper, we proposed the unscented Kalman filter (UKF) based on cooperative spectrum sensing (CSS) scheme in a cognitive radio network (CRN) using an adaptive fuzzy system?in this proposed scheme, firstly, the UKF to apply the nonlinear system which is used to minimize the mean square estimation error; secondly, an adaptive fuzzy logic rule based on an inference engine to estimate the local decisions to detect a licensed primary user (PU) that is applied at the fusion center (FC). After that, the FC makes a global decision by using a defuzzification procedure based on a proposed algorithm. Simulation results show that the proposed scheme achieved better detection gain than the conventional schemes like an equal gain combining (EGC) based soft fusion rule and a Kalman filter (KL) based soft fusion rule under any conditions. Moreover, the proposed scheme achieved the lowest global probability of error compared to both the conventional EGC and KF schemes.