Redirigiendo al acceso original de articulo en 17 segundos...
ARTÍCULO
TITULO

Accuracy Improvement of Airborne Lidar Strip Adjustment by Using Height Data and Surface Feature Strength Information Derived from the Tensor Voting Algorithm

Rey-Jer You and Chao-Liang Lee    

Resumen

Light detection and ranging (Lidar) spatial coordinates, especially height data, and the intensity data of point clouds are often used for strip adjustment in airborne Lidar. However, inconsistency in the intensity data and then intensity gradient data because of the variations in the incidence and reflection angles in the scanning direction and sunlight incident in the same areas of different strips may cause problems in the Lidar strip adjustment process. Instead of the Lidar intensity, a new type of data, termed surface feature strength data derived by using the tensor voting method, were introduced into the strip adjustment process using the partial least squares method in this study. These data are consistent in the same regions of different strips, especially on the roofs of buildings. Our experimental results indicated a significant improvement in the accuracy of strip adjustment results when both height data and surface feature strength data were used.

 Artículos similares

       
 
Priyank Kalgaonkar and Mohamed El-Sharkawy    
Accurate perception is crucial for autonomous vehicles (AVs) to navigate safely, especially in adverse weather and lighting conditions where single-sensor networks (e.g., cameras or radar) struggle with reduced maneuverability and unrecognizable targets.... ver más
Revista: Future Internet

 
Meng Li, Jiqiang Liu and Yeping Yang    
Data governance is an extremely important protection and management measure throughout the entire life cycle of data. However, there are still data governance issues, such as data security risks, data privacy breaches, and difficulties in data management... ver más
Revista: Future Internet

 
Cunxiang Bian, Jinqiang Bai, Guanghe Cheng, Fengqi Hao and Xiyuan Zhao    
Field-road mode classification (FRMC) that identifies ?in-field? and ?on-road? categories for Global Navigation Satellite System (GNSS) trajectory points of agricultural machinery containing geographic information is essential for effective crop improvem... ver más

 
Sepideh Molaei, Stefano Cirillo and Giandomenico Solimando    
MicroRNAs (miRNAs) play a crucial role in cancer development, but not all miRNAs are equally significant in cancer detection. Traditional methods face challenges in effectively identifying cancer-associated miRNAs due to data complexity and volume. This ... ver más

 
Alvaro A. Teran-Quezada, Victor Lopez-Cabrera, Jose Carlos Rangel and Javier E. Sanchez-Galan    
Convolutional neural networks (CNN) have provided great advances for the task of sign language recognition (SLR). However, recurrent neural networks (RNN) in the form of long?short-term memory (LSTM) have become a means for providing solutions to problem... ver más