Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  Applied Sciences  /  Vol: 9 Par: 13 (2019)  /  Artículo
ARTÍCULO
TITULO

Restricted Boltzmann Machine Vectors for Speaker Clustering and Tracking Tasks in TV Broadcast Shows

Umair Khan    
Pooyan Safari and Javier Hernando    

Resumen

Restricted Boltzmann Machines (RBMs) have shown success in both the front-end and backend of speaker verification systems. In this paper, we propose applying RBMs to the front-end for the tasks of speaker clustering and speaker tracking in TV broadcast shows. RBMs are trained to transform utterances into a vector based representation. Because of the lack of data for a test speaker, we propose RBM adaptation to a global model. First, the global model?which is referred to as universal RBM?is trained with all the available background data. Then an adapted RBM model is trained with the data of each test speaker. The visible to hidden weight matrices of the adapted models are concatenated along with the bias vectors and are whitened to generate the vector representation of speakers. These vectors, referred to as RBM vectors, were shown to preserve speaker-specific information and are used in the tasks of speaker clustering and speaker tracking. The evaluation was performed on the audio recordings of Catalan TV Broadcast shows. The experimental results show that our proposed speaker clustering system gained up to 12% relative improvement, in terms of Equal Impurity (EI), over the baseline system. On the other hand, in the task of speaker tracking, our system has a relative improvement of 11% and 7% compared to the baseline system using cosine and Probabilistic Linear Discriminant Analysis (PLDA) scoring, respectively.

 Artículos similares

       
 
Daniel S. Berman, Anna L. Buczak, Jeffrey S. Chavis and Cherita L. Corbett    
This survey paper describes a literature review of deep learning (DL) methods for cyber security applications. A short tutorial-style description of each DL method is provided, including deep autoencoders, restricted Boltzmann machines, recurrent neural ... ver más
Revista: Information

 
Qi Wang, Ruohua Zhou and Yonghong Yan    
This paper proposes a note-based music language model (MLM) for improving note-level polyphonic piano transcription. The MLM is based on the recurrent structure, which could model the temporal correlations between notes in music sequences. To combine the... ver más
Revista: Applied Sciences

 
Ali A. Alani    
-
Revista: Information