Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Algorithms  /  Vol: 15 Par: 4 (2022)  /  Artículo
ARTÍCULO
TITULO

Trinity: Neural Network Adaptive Distributed Parallel Training Method Based on Reinforcement Learning

Yan Zeng    
Jiyang Wu    
Jilin Zhang    
Yongjian Ren and Yunquan Zhang    

Resumen

Deep learning, with increasingly large datasets and complex neural networks, is widely used in computer vision and natural language processing. A resulting trend is to split and train large-scale neural network models across multiple devices in parallel, known as parallel model training. Existing parallel methods are mainly based on expert design, which is inefficient and requires specialized knowledge. Although automatically implemented parallel methods have been proposed to solve these problems, these methods only consider a single optimization aspect of run time. In this paper, we present Trinity, an adaptive distributed parallel training method based on reinforcement learning, to automate the search and tuning of parallel strategies. We build a multidimensional performance evaluation model and use proximal policy optimization to co-optimize multiple optimization aspects. Our experiment used the CIFAR10 and PTB datasets based on InceptionV3, NMT, NASNet and PNASNet models. Compared with Google?s Hierarchical method, Trinity achieves up to 5% reductions in runtime, communication, and memory overhead, and up to a 40% increase in parallel strategy search speeds.

 Artículos similares

       
 
Huihui Zhu, Hexiang Lin, Shaojun Wu, Wei Luo, Hui Zhang, Yuancheng Zhan, Xiaoting Wang, Aiqun Liu and Leong Chuan Kwek    
Integrated photonic chips leverage the recent developments in integrated circuit technology, along with the control and manipulation of light signals, to realize the integration of multiple optical components onto a single chip. By exploiting the power o... ver más
Revista: Information

 
Mark A. Denisenko, Alina S. Isaeva, Alexander S. Sinyukin and Andrey V. Kovalev    
The fast, convenient, and accurate determination of railroad cars? load mass is critical to ensure safety and allow asset counting in railway infrastructure. In this paper, we propose a method for modeling the mechanical deformations that occur in the ra... ver más
Revista: Infrastructures

 
Ahmed Skhiri, Ali Ferhi, Anis Bousselmi, Slaheddine Khlifi and Mohamed A. Mattar    
A correct determination of irrigation water requirements necessitates an adequate estimation of reference evapotranspiration (ETo). In this study, monthly ETo is estimated using artificial neural network (ANN) models. Eleven combinations of long-term ave... ver más
Revista: Water

 
Donghae Baek, Il Won Seo, Jun Song Kim, Sung Hyun Jung and Yuyoung Choi    
The dispersion coefficients are crucial in understanding the spreading of pollutant clouds in river flows, particularly in the context of the depth-averaged two-dimensional (2D) advection?dispersion equation (ADE). Traditionally, the 2D stream-tube routi... ver más
Revista: Water

 
Yong Liu, Xiaohui Yan, Wenying Du, Tianqi Zhang, Xiaopeng Bai and Ruichuan Nan    
The current work proposes a novel super-resolution convolutional transposed network (SRCTN) deep learning architecture for downscaling daily climatic variables. The algorithm was established based on a super-resolution convolutional neural network with t... ver más
Revista: Water