Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Algorithms  /  Vol: 15 Par: 4 (2022)  /  Artículo
ARTÍCULO
TITULO

Trinity: Neural Network Adaptive Distributed Parallel Training Method Based on Reinforcement Learning

Yan Zeng    
Jiyang Wu    
Jilin Zhang    
Yongjian Ren and Yunquan Zhang    

Resumen

Deep learning, with increasingly large datasets and complex neural networks, is widely used in computer vision and natural language processing. A resulting trend is to split and train large-scale neural network models across multiple devices in parallel, known as parallel model training. Existing parallel methods are mainly based on expert design, which is inefficient and requires specialized knowledge. Although automatically implemented parallel methods have been proposed to solve these problems, these methods only consider a single optimization aspect of run time. In this paper, we present Trinity, an adaptive distributed parallel training method based on reinforcement learning, to automate the search and tuning of parallel strategies. We build a multidimensional performance evaluation model and use proximal policy optimization to co-optimize multiple optimization aspects. Our experiment used the CIFAR10 and PTB datasets based on InceptionV3, NMT, NASNet and PNASNet models. Compared with Google?s Hierarchical method, Trinity achieves up to 5% reductions in runtime, communication, and memory overhead, and up to a 40% increase in parallel strategy search speeds.

 Artículos similares

       
 
Huihui Zhu, Hexiang Lin, Shaojun Wu, Wei Luo, Hui Zhang, Yuancheng Zhan, Xiaoting Wang, Aiqun Liu and Leong Chuan Kwek    
Integrated photonic chips leverage the recent developments in integrated circuit technology, along with the control and manipulation of light signals, to realize the integration of multiple optical components onto a single chip. By exploiting the power o... ver más
Revista: Information

 
Dibo Dong, Shangwei Wang, Qiaoying Guo, Yiting Ding, Xing Li and Zicheng You    
Predicting wind speed over the ocean is difficult due to the unequal distribution of buoy stations and the occasional fluctuations in the wind field. This study proposes a dynamic graph embedding-based graph neural network?long short-term memory joint fr... ver más

 
María Gema Carrasco-García, María Inmaculada Rodríguez-García, Juan Jesús Ruíz-Aguilar, Lipika Deka, David Elizondo and Ignacio José Turias Domínguez    
Hyperspectral technology has been playing a leading role in monitoring oil spills in marine environments, which is an issue of international concern. In the case of monitoring oil spills in local areas, hyperspectral technology of small dimensions is the... ver más

 
Qirui Bo, Junwei Liu, Wenchang Shang, Ankit Garg, Xiaoru Jia and Kaiyue Sun    
Nowadays, the use of new compound chemical stabilizers to treat marine clay has gained significant attention. However, the complex non-linear relationship between the influencing factors and the unconfined compressive strength of chemically treated marin... ver más

 
Pengyun Chen, Zhiru Li, Guangqing Liu, Ziyi Wang, Jiayu Chen, Shangyao Shi, Jian Shen and Lizhou Li    
The positioning results of terrain matching in flat terrain areas will significantly deteriorate due to the influence of terrain nonlinearity and multibeam measurement noise. To tackle this problem, this study presents the Pulse-Coupled Neural Network (P... ver más