Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Applied Sciences  /  Vol: 14 Par: 8 (2024)  /  Artículo
ARTÍCULO
TITULO

Using Bayesian Regularized Artificial Neural Networks to Predict the Tensile Strength of Additively Manufactured Polylactic Acid Parts

Valentina Vendittoli    
Wilma Polini    
Michael S. J. Walter and Stefan Geißelsöder    

Resumen

Additive manufacturing has transformed the production process by enabling the construction of components in a layer-by-layer approach. This study integrates Artificial Neural Networks to explore the nuanced relationship between process parameters and mechanical performance in Fused Filament Fabrication. Using a fractional Taguchi design, seven key process parameters are systematically varied to provide a robust dataset for model training. The resulting model confirms its accuracy in predicting tensile strength. In particular, the mean squared error is 0.002, and the mean absolute error is 0.024. These results significantly advance the understanding of 3D manufactured parts, shedding light on the intricate dynamics between process nuances and mechanical outcomes. Furthermore, they underscore the transformative role of machine learning in precision-driven quality prediction and optimization in additive manufacturing.

 Artículos similares

       
 
Khalid Alnajim and Ahmed A. Abokifa    
In the wake of the terrorist attacks of 11 September 2001, extensive research efforts have been dedicated to the development of computational algorithms for identifying contamination sources in water distribution systems (WDSs). Previous studies have ext... ver más
Revista: Water

 
Jingbei Sun, Huimin Li, Wenming Lin and Yijun He    
Spaceborne synthetic aperture radar (SAR) has been proven to be a useful technique for observing the sea surface wind and current over the open ocean given its all-weather data-gathering capability and high spatial resolution. In addition to the commonly... ver más

 
Danilo Pau, Andrea Pisani and Antonio Candelieri    
In the context of TinyML, many research efforts have been devoted to designing forward topologies to support On-Device Learning. Reaching this target would bring numerous advantages, including reductions in latency and computational complexity, stronger ... ver más
Revista: Algorithms

 
Vinh Pham, Maxim Tyan, Tuan Anh Nguyen and Jae-Woo Lee    
Multi-fidelity surrogate modeling (MFSM) methods are gaining recognition for their effectiveness in addressing simulation-based design challenges. Prior approaches have typically relied on recursive techniques, combining a limited number of high-fidelity... ver más
Revista: Aerospace

 
Francisca Lanai Ribeiro Torres, Luana Medeiros Marangon Lima, Michelle Simões Reboita, Anderson Rodrigo de Queiroz and José Wanderley Marangon Lima    
Streamflow forecasting plays a crucial role in the operational planning of hydro-dominant power systems, providing valuable insights into future water inflows to reservoirs and hydropower plants. It relies on complex mathematical models, which, despite t... ver más
Revista: Water