Redirigiendo al acceso original de articulo en 15 segundos...
Inicio  /  Applied Sciences  /  Vol: 12 Par: 13 (2022)  /  Artículo
ARTÍCULO
TITULO

Remote Sensing of the Water Quality Parameters for a Shallow Dam Reservoir

Andrzej Bielski and Cezary Tos    

Resumen

This study examines the chlorophyll a content and turbidity in the shallow dam reservoir of Lake Dobczyce. The analysis of satellite images for thirteen wavelength ranges enabled the selection of wavelengths applicable for a remote determination of chlorophyll a and turbidity. The selection was completed as the test of the significance of the coefficients in the equation, which calculates the values of the parameters on the basis of reflectance. The reflectance of the reservoir surface differs from the reflectance of individual water components, and the overlapping of spectral curves makes it difficult to isolate the significant reflectance. In the case of Lake Dobczyce, the significant reflectance was for wavelengths 665, 705, 740, and 842 nm (chlorophyll a) and for wavelengths 705, 740, and 783 nm (turbidity). In the model, the natural logarithm of chlorophyll a or turbidity was a linear combination of the natural log reflectance and the squares of those logarithms. A lake surface reflectance also includes the bottom reflectance. The reflectance obtained from the Sentinel-2 satellite was corrected with a bottom reflectance determined using the Lambert?Beer equation. The reflectance of a given surface may vary with the position of both the satellite and the sun, atmospheric pollution, and other factors. Correction of reflectance from satellite measurements was performed, as reflectance changes for the reference surface; the reference reflectance was assumed as the first reflectance of the reference surface observed during the study. The models helped to develop the maps of turbidity and chlorophyll a content in the lake.

 Artículos similares

       
 
Zhou Fang, Xiaoyong Wang, Liang Zhang and Bo Jiang    
Currently, deep learning is extensively utilized for ship target detection; however, achieving accurate and real-time detection of multi-scale targets remains a significant challenge. Considering the diverse scenes, varied scales, and complex backgrounds... ver más

 
Juan M. Soria, Juan Víctor Molner, Rebeca Pérez-González, Bárbara Alvado, Lucía Vera-Herrera and Susana Romo    
The Albufera of Valencia, a Mediterranean coastal lagoon, has been in a turbid state since 1974, with only four episodes of temporary water transparency in spring. Despite its average depth of 1 m and oligohaline waters, excessive turbidity, fish grazing... ver más

 
Zhaoyue Ma, Yong Zhao, Wenjing Zhao, Jiajun Feng, Yingying Liu, Jin Yeu Tsou and Yuanzhi Zhang    
This study on total suspended matter (TSM) in the Pearl River Estuary established a regression analysis model using Landsat 8 reflectance and measured TSM data, crucial for environmental management and engineering projects. High coefficients of determina... ver más

 
Salvatore Savastano, Paula Gomes da Silva, Jara Martínez Sánchez, Arnau Garcia Tort, Andres Payo, Mark E. Pattle, Albert Garcia-Mondéjar, Yeray Castillo and Xavier Monteys    
Coasts are continually changing and remote sensing from satellites has the potential to both map and monitor coastal change at multiple scales. Unlike optical technology, synthetic aperture radar (SAR) is uninfluenced by darkness, clouds, and rain, poten... ver más

 
Xiaohui Yan, Tianqi Zhang, Wenying Du, Qingjia Meng, Xinghan Xu and Xiang Zhao    
Water quality prediction, a well-established field with broad implications across various sectors, is thoroughly examined in this comprehensive review. Through an exhaustive analysis of over 170 studies conducted in the last five years, we focus on the a... ver más