Resumen
One of the possible approaches to solving difficult optimization problems is applying population-based metaheuristics. Among such metaheuristics, there is a special class where searching for the best solution is based on the collective behavior of decentralized, self-organized agents. This study proposes an approach in which a swarm of agents tries to improve solutions from the population of solutions. The process is carried out in parallel threads. The proposed algorithm?based on the mushroom-picking metaphor?was implemented using Scala in an Apache Spark environment. An extended computational experiment shows how introducing a combination of simple optimization agents and increasing the number of threads may improve the results obtained by the model in the case of TSP and JSSP problems.