Resumen
The present study reports an eco-friendly synthesis method of silver nanoparticles (AgNPs) using two different extracts (aqueous and ethanolic) of Tagetes erecta flowers. When exposed to different biocompounds found in the plant, silver ions are reduced, thus, resulting in the green synthesis of nanoparticles. After performing the optimization of synthesis, the obtained AgNPs were characterized using various techniques. The UV?Vis spectrum of the synthesized nanoparticles showed maximum peaks at 410 and 420 nm. TEM analysis revealed that the particles were spherical with a size ranging from 10 to 15 nm, and EDX analysis confirmed the presence of silver metal. The average diameter value obtained through DLS analysis for the two types of AgNPs (obtained using aqueous and ethanolic extracts) was 104 and 123 nm. The Zeta potentials of the samples were -27.74 mV and -26.46 mV, respectively, which indicates the stability of the colloidal solution. The antioxidant and antimicrobial activities assays showed that nanoparticles obtained using the aqueous extract presented enhanced antioxidant activity compared to the corresponding extract, with both types of AgNPs exhibiting improved antifungal properties compared to the initial extracts.