Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Applied Sciences  /  Vol: 10 Par: 21 (2020)  /  Artículo
ARTÍCULO
TITULO

Empirical Evaluation of the Effect of Optimization and Regularization Techniques on the Generalization Performance of Deep Convolutional Neural Network

Ivana Marin    
Ana Kuzmanic Skelin and Tamara Grujic    

Resumen

The main goal of any classification or regression task is to obtain a model that will generalize well on new, previously unseen data. Due to the recent rise of deep learning and many state-of-the-art results obtained with deep models, deep learning architectures have become one of the most used model architectures nowadays. To generalize well, a deep model needs to learn the training data well without overfitting. The latter implies a correlation of deep model optimization and regularization with generalization performance. In this work, we explore the effect of the used optimization algorithm and regularization techniques on the final generalization performance of the model with convolutional neural network (CNN) architecture widely used in the field of computer vision. We give a detailed overview of optimization and regularization techniques with a comparative analysis of their performance with three CNNs on the CIFAR-10 and Fashion-MNIST image datasets.

 Artículos similares

       
 
Liming Li and Zeang Zhao    
To effectively enhance the adaptability of earthquake rescue robots in dynamic environments and complex tasks, there is an urgent need for an evaluation method that quantifies their performance and facilitates the selection of rescue robots with optimal ... ver más
Revista: Applied Sciences

 
Shengkun Gu and Dejiang Wang    
Within the domain of architectural urban informatization, the automated precision recognition of two-dimensional paper schematics emerges as a pivotal technical challenge. Recognition methods traditionally employed frequently encounter limitations due to... ver más
Revista: Information

 
Varsha S. Lalapura, Veerender Reddy Bhimavarapu, J. Amudha and Hariram Selvamurugan Satheesh    
The Recurrent Neural Networks (RNNs) are an essential class of supervised learning algorithms. Complex tasks like speech recognition, machine translation, sentiment classification, weather prediction, etc., are now performed by well-trained RNNs. Local o... ver más
Revista: Algorithms

 
Chunru Cheng, Linbing Wang, Xingye Zhou and Xudong Wang    
As the main cause of asphalt pavement distress, rutting severely affects pavement safety. Establishing an accurate rutting prediction model is crucial for asphalt pavement maintenance, pavement structure design, and pavement repair. This study explores f... ver más
Revista: Applied Sciences

 
Chi Han, Wei Xiong and Ronghuan Yu    
Mega-constellation network traffic forecasting provides key information for routing and resource allocation, which is of great significance to the performance of satellite networks. However, due to the self-similarity and long-range dependence (LRD) of m... ver más
Revista: Aerospace