Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Applied Sciences  /  Vol: 14 Par: 5 (2024)  /  Artículo
ARTÍCULO
TITULO

Anomaly Detection and Identification Method for Shield Tunneling Based on Energy Consumption Perspective

Min Hu    
Fan Zhang and Huiming Wu    

Resumen

Various abnormal scenarios might occur during the shield tunneling process, which have an impact on construction efficiency and safety. Existing research on shield tunneling construction anomaly detection typically designs models based on the characteristics of a specific anomaly, so the scenarios of anomalies that can be detected are limited. Therefore, the research objective of this article is to establish an accurate anomaly detection model with generalization and identification capabilities on multiple types of abnormal scenarios. Inspired by energy dissipation theory, this paper innovatively detects various anomalies in the shield tunneling process from the perspective of energy consumption and designs the AD_SI model (Anomaly Detection and Scenario Identification model of shield tunneling) based on machine learning. The AD_SI model first monitors the shield machine?s energy consumption status based on the VAE-LSTM (Variational Autoencoder?Long Short-Term Memory) algorithm with a dynamic threshold, thereby detecting abnormal sections. Secondly, the AD_SI model uses the correlation of construction parameters to represent different known scenarios and further clarifies scenarios of the abnormal sections, thus achieving anomaly identification. The application of the AD_SI model in a shield tunneling construction project demonstrates its capability to accurately detect and identify different anomalies, with a recall value exceeding 0.9 and F1 exceeding 0.8, thereby providing guidance for accurately detecting multiple types anomaly scenarios in practical applications.

 Artículos similares

       
 
Juan Luis Pérez-Ruiz, Yu Tang, Igor Loboda and Luis Angel Miró-Zárate    
In the field of aircraft engine diagnostics, many advanced algorithms have been proposed over the last few years. However, there is still wide room for improvement, especially in the development of more integrated and complete engine health management sy... ver más
Revista: Aerospace

 
Urszula Libal and Pawel Biernacki    
An automatic honey bee classification system based on audio signals for tracking the frequency of workers and drones entering and leaving a hive.
Revista: Applied Sciences

 
Mohamed Shenify, Fokrul Alom Mazarbhuiya and A. S. Wungreiphi    
There are many applications of anomaly detection in the Internet of Things domain. IoT technology consists of a large number of interconnecting digital devices not only generating huge data continuously but also making real-time computations. Since IoT d... ver más
Revista: Applied Sciences

 
Woo-Hyun Choi and Jongwon Kim    
Industrial control systems (ICSs) play a crucial role in managing and monitoring critical processes across various industries, such as manufacturing, energy, and water treatment. The connection of equipment from various manufacturers, complex communicati... ver más

 
Jaehan Jeon and Gerasimos Theotokatos    
Digital twins (DTs) are gradually employed in the maritime industry to represent the physical systems and generate datasets, among others. However, the trustworthiness of both the digital twins and datasets must be assured. This study aims at developing ... ver más