Redirigiendo al acceso original de articulo en 20 segundos...
Inicio  /  Applied Sciences  /  Vol: 12 Par: 17 (2022)  /  Artículo
ARTÍCULO
TITULO

Validation of a Wind Tunnel Propeller Dynamometer for Group 2 Unmanned Aircraft

Muwanika Jdiobe    
Kurt Rouser    
Ryan Paul and Austin Rouser    

Resumen

This paper presents an approach to validate a wind tunnel propeller dynamometer applicable to Group 2 unmanned aircraft. The intended use of such a dynamometer is to characterize propellers over a relevant range of sizes and operating conditions, under which such propellers are susceptible to low-Reynolds-number effects that can be challenging to experimentally detect in a wind tunnel. Even though uncertainty analysis may inspire confidence in dynamometer data, it is possible that a dynamometer design or experimental arrangement (e.g., configuration and instrumentation) is not able to detect significant propeller characteristics and may even impart artifacts in the results. The validation method proposed here compares analytical results from Blade Element Momentum Theory (BEMT) to experimental data to verify that a dynamometer captures basic propeller physics, as well as self-similar experimental results to verify that a dynamometer is able to resolve differences in propeller diameter and pitch. Two studies were conducted to verify that dynamometer experimental data match the performance predicted by BEMT. The first study considered three propellers with the same 18-inch (0.457 m) diameter and varied pitch from 10 to 14 inches (0.254 to 0.356 m). The second study held pitch constant and varied diameter from 14 to 18 inches (0.356 to 0.457 m). During testing, wind tunnel speeds ranged from 25 ft/s to 50 ft/s ( 7.62 to 15.24 m/s), and propeller rotational speeds varied from 1500 to 5500 revolutions per minute (RPM). Analytical results from a BEMT code were compared to available experimental data from previous work to show proper application of the code to predict performance. Dynamometer experimental results for thrust coefficient and propeller efficiency were then compared to BEMT results. Experimental results were consistent with the expected effect of varying pitch and diameter and were in close agreement with BEMT predictions, lending confidence that the dynamometer performed as expected and is dependable for future data collection efforts. The method used in this study is recommended for validating wind tunnel propeller dynamometers, especially for Group 2 unmanned aircraft, to ensure reliable performance data.

Palabras claves

 Artículos similares

       
 
Andris Slavinskis, Mario F. Palos, Janis Dalbins, Pekka Janhunen, Martin Tajmar, Nickolay Ivchenko, Agnes Rohtsalu, Aldo Micciani, Nicola Orsini, Karl Mattias Moor, Sergei Kuzmin, Marcis Bleiders, Marcis Donerblics, Ikechukwu Ofodile, Johan Kütt, Tõnis Eenmäe, Viljo Allik, Jaan Viru, Pätris Halapuu, Katriin Kristmann, Janis Sate, Endija Briede, Marius Anger, Katarina Aas, Gustavs Plonis, Hans Teras, Kristo Allaje, Andris Vaivads, Lorenzo Niccolai, Marco Bassetto, Giovanni Mengali, Petri Toivanen, Iaroslav Iakubivskyi, Mihkel Pajusalu and Antti TammaddShow full author listremoveHide full author list    
The electric solar wind sail, or E-sail, is a propellantless interplanetary propulsion system concept. By deflecting solar wind particles off their original course, it can generate a propulsive effect with nothing more than an electric charge. The high-v... ver más
Revista: Aerospace

 
Ivan di Stefano, Daniele Durante, Paolo Cappuccio and Paolo Racioppa    
The exploration of Uranus, a key archetype for ice giant planets and a gateway to understanding distant exoplanets, is acquiring increasing interest in recent years, especially after the Uranus Orbiter and Probe (UOP) mission has been prioritized in the ... ver más
Revista: Aerospace

 
Mohan Kumar Gajendran, Ijaz Fazil Syed Ahmed Kabir, Sudhakar Vadivelu and E. Y. K. Ng    
As wind energy continues to be a crucial part of sustainable power generation, the need for precise and efficient modeling of wind turbines, especially under yawed conditions, becomes increasingly significant. Addressing this, the current study introduce... ver más

 
Nicholas F. Giannelis, Tamas Bykerk and Gareth A. Vio    
This paper introduces a generic model for the study of aerodynamic behaviour relevant to fifth-generation high-performance aircraft. The model design is presented, outlining simplifications made to retain the key features of modern high-performance vehic... ver más
Revista: Aerospace

 
Yuxiang Zhang, Reamonn MacReamoinn, Philip Cardiff and Jennifer Keenahan    
Aerodynamic performance is of critical importance to the design of long-span bridges. Computational fluid dynamics (CFD) modelling offers bridge designers an opportunity to investigate aerodynamic performance for long-span bridges during the design phase... ver más
Revista: Infrastructures