Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Applied Sciences  /  Vol: 10 Par: 21 (2020)  /  Artículo
ARTÍCULO
TITULO

Rearfoot, Midfoot, and Forefoot Motion in Naturally Forefoot and Rearfoot Strike Runners during Treadmill Running

Alessandra B. Matias    
Paolo Caravaggi    
Ulisses T. Taddei    
Alberto Leardini and Isabel C. N. Sacco    

Resumen

Different location and incidence of lower extremity injuries have been reported in rearfoot strike (RFS) and forefoot strike (FFS) recreational runners. These might be related to functional differences between the two footstrike patterns affecting foot kinematics and thus the incidence of running injuries. The aim of this study was to investigate and compare the kinematic patterns of foot joints between naturally RFS and FFS runners. A validated multi-segment foot model was used to measure 24 foot kinematic variables in long-distance recreational runners while running on a treadmill. These variables included the three-dimensional relative motion between rearfoot, midfoot, and forefoot segments. The footstrike pattern was identified using kinematic data and slow-motion videos. Functional analysis of variance was used to compare the time series of these variables between RFS (n = 49) and FFS (n = 25) runners. In FFS runners, the metatarsal bones were less tilted with respect to the ground, and the metatarsus was less adducted with respect to the calcaneus during stance. In early stance, the calcaneus was more dorsiflexed with respect to the shank and returned to a more plantarflexed position at push-off. FFS runners showed a more adducted calcaneus with respect to the shank and a less inverted midfoot to the calcaneus. The present study has showed that the footstrike angle characterizes foot kinematics in running. These data may help shed more light on the relationship between foot function and running-related injuries.

 Artículos similares