Resumen
The failed dental implant associated with maxillary sinusitis is a multifactorial phenomenon and should be investigated thoroughly. The inflammatory process induced by accumulated biofilm and wear debris may increase mucous secretion and mucous thickening, which finally may lead to severe complications such as maxillary sinusitis. The inflammatory cytokines might compromise the long-term osseointegration of the related implant. In this study, implants retrieved from three patients who experienced implant failure relating to maxillary sinusitis were investigated using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy. SEM analysis of the implant apical region revealed a less-compact bone structure, indicating the high bone turnover due to an inflammatory process. The ratio of calcium (Ca) and phosphorus (P) was negligible in all specimens. Detection of fluorine (F), sodium (Na), silicon (Si), gold (Au), aluminum (Al), and magnesium (Mg) confirmed the contamination. The selected cases presented different biological aspects that might play the central role in the failed dental implants associated with maxillary sinusitis: the contamination of potentially toxic elements, microorganism infection, and long perforation of implant apex into the sinus. Each of the above phenomena needs to be confirmed with further clinical study with a larger number of failed implants and accompanying tissue samples.