Resumen
Research on the electrical properties of rocks and ores plays a crucial role in the development of geophysical electromagnetism methods. However, currently available instruments suffer from high power consumption, a limited number of electrodes, inaccurate measurements, poor portability, and a limited ability to measure the electrical parameters of rocks and ores. To address these issues, this paper presents a three-dimensional electrical impedance tomography system for rock samples with high-density microelectrodes based on an Android system and STM32 microcontroller. The system features high observation accuracy, dense electrode arrays (with 384 current and potential electrodes), flexible electrode selection, user-friendly human?computer interaction, good stability, and real-time performance. Powered by a single power bank, the entire instrument can be controlled and monitored wirelessly via Bluetooth and Wi-Fi technology using an Android smartphone. Additionally, the system not only enables accurate measurement of electrical parameters, but also facilitates the generation of three-dimensional impedance imaging of specimens via inversion algorithms after data export, allowing for a comprehensive understanding of the electrical properties of rocks and ores. This system holds great potential for future research in this field.