Resumen
As the world moves into the exciting age of Healthcare 4.0, it is essential that patients and clinicians have confidence and reassurance that the real-time clinical decision support systems being used throughout their care guarantee robustness and optimal quality of care. However, current systems involving autonomic behaviour and those with no prior clinical feedback, have generally to date had little focus on demonstrating robustness in the use of data and final output, thus generating a lack of confidence. This paper wishes to address this challenge by introducing a new process mining approach based on a statistically robust methodology that relies on the utilisation of conditional survival models for the purpose of evaluating the performance of Healthcare 4.0 systems and the quality of the care provided. Its effectiveness is demonstrated by analysing the performance of a clinical decision support system operating in an intensive care setting with the goal to monitor ventilated patients in real-time and to notify clinicians if the patient is predicted at risk of receiving injurious mechanical ventilation. Additionally, we will also demonstrate how the same metrics can be used for evaluating the patient quality of care. The proposed methodology can be used to analyse the performance of any Healthcare 4.0 system and the quality of care provided to the patient.