Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Algorithms  /  Vol: 15 Par: 6 (2022)  /  Artículo
ARTÍCULO
TITULO

Machine Learning and rs-fMRI to Identify Potential Brain Regions Associated with Autism Severity

Igor D. Rodrigues    
Emerson A. de Carvalho    
Caio P. Santana and Guilherme S. Bastos    

Resumen

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized primarily by social impairments that manifest in different severity levels. In recent years, many studies have explored the use of machine learning (ML) and resting-state functional magnetic resonance images (rs-fMRI) to investigate the disorder. These approaches evaluate brain oxygen levels to indirectly measure brain activity and compare typical developmental subjects with ASD ones. However, none of these works have tried to classify the subjects into severity groups using ML exclusively applied to rs-fMRI data. Information on ASD severity is frequently available since some tools used to support ASD diagnosis also include a severity measurement as their outcomes. The aforesaid is the case of the Autism Diagnostic Observation Schedule (ADOS), which splits the diagnosis into three groups: ?autism?, ?autism spectrum?, and ?non-ASD?. Therefore, this paper aims to use ML and fMRI to identify potential brain regions as biomarkers of ASD severity. We used the ADOS score as a severity measurement standard. The experiment used fMRI data of 202 subjects with an ASD diagnosis and their ADOS scores available at the ABIDE I consortium to determine the correct ASD sub-class for each one. Our results suggest a functional difference between the ASD sub-classes by reaching 73.8% accuracy on cingulum regions. The aforementioned shows the feasibility of classifying and characterizing ASD using rs-fMRI data, indicating potential areas that could lead to severity biomarkers in further research. However, we highlight the need for more studies to confirm our findings.

 Artículos similares

       
 
Zhenzhen Di, Miao Chang, Peikun Guo, Yang Li and Yin Chang    
Most worldwide industrial wastewater, including in China, is still directly discharged to aquatic environments without adequate treatment. Because of a lack of data and few methods, the relationships between pollutants discharged in wastewater and those ... ver más
Revista: Water

 
Ognjen Radovic,Srdan Marinkovic,Jelena Radojicic    
Credit scoring attracts special attention of financial institutions. In recent years, deep learning methods have been particularly interesting. In this paper, we compare the performance of ensemble deep learning methods based on decision trees with the b... ver más

 
Pablo de Llano, Carlos Piñeiro, Manuel Rodríguez     Pág. pp. 163 - 198
This paper offers a comparative analysis of the effectiveness of eight popular forecasting methods: univariate, linear, discriminate and logit regression; recursive partitioning, rough sets, artificial neural networks, and DEA. Our goals are: clarify the... ver más

 
Hugo López-Fernández     Pág. 22 - 25
Mass spectrometry using matrix assisted laser desorption ionization coupled to time of flight analyzers (MALDI-TOF MS) has become popular during the last decade due to its high speed, sensitivity and robustness for detecting proteins and peptides. This a... ver más

 
Rejath Jose, Faiz Syed, Anvin Thomas and Milan Toma    
The advancement of machine learning in healthcare offers significant potential for enhancing disease prediction and management. This study harnesses the PyCaret library?a Python-based machine learning toolkit?to construct and refine predictive models for... ver más
Revista: Applied Sciences