Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  Applied Sciences  /  Vol: 14 Par: 4 (2024)  /  Artículo
ARTÍCULO
TITULO

Adversarial Attacks with Defense Mechanisms on Convolutional Neural Networks and Recurrent Neural Networks for Malware Classification

Sharoug Alzaidy and Hamad Binsalleeh    

Resumen

In the field of behavioral detection, deep learning has been extensively utilized. For example, deep learning models have been utilized to detect and classify malware. Deep learning, however, has vulnerabilities that can be exploited with crafted inputs, resulting in malicious files being misclassified. Cyber-Physical Systems (CPS) may be compromised by malicious files, which can have catastrophic consequences. This paper presents a method for classifying Windows portable executables (PEs) using Recurrent Neural Networks (RNNs) and Convolutional Neural Networks (CNNs). To generate malware executable adversarial examples of PE, we conduct two white-box attacks, Jacobian-based Saliency Map Attack (JSMA) and Carlini and Wagner attack (C&W). An adversarial payload was injected into the DOS header, and a section was added to the file to preserve the PE functionality. The attacks successfully evaded the CNN model with a 91% evasion rate, whereas the RNN model evaded attacks at an 84.6% rate. Two defense mechanisms based on distillation and training techniques are examined in this study for overcoming adversarial example challenges. Distillation and training against JSMA resulted in the highest reductions in the evasion rates of 48.1% and 41.49%, respectively. Distillation and training against C&W resulted in the highest decrease in evasion rates, at 48.1% and 49.9%, respectively.

 Artículos similares

       
 
Andrea D?Ambrosio and Roberto Furfaro    
This paper demonstrates the utilization of Pontryagin Neural Networks (PoNNs) to acquire control strategies for achieving fuel-optimal trajectories. PoNNs, a subtype of Physics-Informed Neural Networks (PINNs), are tailored for solving optimal control pr... ver más
Revista: Aerospace

 
Weijun Li, Jintong Liu, Yuxiao Gao, Xinyong Zhang and Jianlai Gu    
The task of named entity recognition (NER) is to identify entities in the text and predict their categories. In real-life scenarios, the context of the text is often complex, and there may exist nested entities within an entity. This kind of entity is ca... ver más

 
Xiaoou Li    
This paper tackles the challenge of time series forecasting in the presence of missing data. Traditional methods often struggle with such data, which leads to inaccurate predictions. We propose a novel framework that combines the strengths of Generative ... ver más
Revista: Information

 
Nikolaos Zafeiropoulos, Pavlos Bitilis, George E. Tsekouras and Konstantinos Kotis    
In the realm of Parkinson?s Disease (PD) research, the integration of wearable sensor data with personal health records (PHR) has emerged as a pivotal avenue for patient alerting and monitoring. This study delves into the complex domain of PD patient car... ver más
Revista: Information

 
Dimitris Mpouziotas, Jeries Besharat, Ioannis G. Tsoulos and Chrysostomos Stylios    
AliAmvra is a project developed to explore and promote high-quality catches of the Amvrakikos Gulf (GP) to Artas? wider regions. In addition, this project aimed to implement an integrated plan of action to form a business identity with high added value a... ver más
Revista: Information